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Abstract—Information divergence that measures the difference
between two nonnegative matrices or tensors has found its
use in a variety of machine learning problems. Examples are
Nonnegative Matrix/Tensor Factorization, Stochastic Neighbor
Embedding, topic models, and Bayesian network optimization.
The success of such a learning task depends heavily on a
suitable divergence. A large variety of divergences have been
suggested and analyzed, but very few results are available for
an objective choice of the optimal divergence for a given task.
Here we present a framework that facilitates automatic selection
of the best divergence among a given family, based on standard
maximum likelihood estimation. We first propose an approxi-
mated Tweedie distribution for the /-divergence family. Selecting
the best 3 then becomes a machine learning problem solved
by maximum likelihood. Next, we reformulate a-divergence in
terms of [-divergence, which enables automatic selection of «
by maximum likelihood with reuse of the learning principle for
[-divergence. Furthermore, we show the connections between ~-
and [-divergences as well as Rényi- and a-divergences, such
that our automatic selection framework is extended to non-
separable divergences. Experiments on both synthetic and real-
world data demonstrate that our method can quite accurately
select information divergence across different learning problems
and various divergence families.

Index Terms—information divergence, Tweedie distribution,
maximum likelihood, nonnegative matrix factorization, stochastic
neighbor embedding.

I. INTRODUCTION

Information divergences are an essential element in modern
machine learning. They originated in estimation theory where
a divergence maps the dissimilarity between two probability
distributions to nonnegative values. Presently, information
divergences have been extended for nonnegative tensors and
used in many learning problems where the objective is to min-
imize the approximation error between the observed data and
the model. Typical applications include Nonnegative Matrix
Factorization (see e.g. [1], [2], [3], [4]), Stochastic Neighbor
Embedding [5], [6], topic models [7], [8], and Bayesian
network optimization [9].

There exist a large variety of information divergences. In
Section II, we summarize the most popularly used parametric
families including «-, 8-, v- and Rényi-divergences [10], [11],
[12], [13], [14] and their combinations (e.g. [15]). The four
parametric families in turn belong to broader ones such as
the Csiszdr-Morimoto f-divergences [16], [17] and Bregman
divergences [18]. Data analysis techniques based on informa-
tion divergences have been widely and successfully applied
to various data such as text [19], electroencephalography [3],
facial images [20], and audio spectrograms [21].
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Compared to the rich set of available information diver-
gences, there is little research on how to select the best one
for a given application. This is an important issue because
the performance of a given divergence-based estimation or
modeling method in a particular task very much depends on
the divergence used. Formulating a learning task in a family of
divergences greatly increases the flexibility to handle different
types of noise in data. For example, Euclidean distance is
suitable for data with Gaussian noise; Kullback-Leibler diver-
gence has shown success for finding topics in text documents
[7]; and Itakura-Saito divergence has proven to be suitable
for audio signal processing [21]. A conventional workaround
is to select among a finite number of candidate divergences
using a validation set. This however cannot be applied to
divergences that are non-separable over tensor entries. The
validation approach is also problematic for tasks where all
data are needed for learning, for example, cluster analysis.

In Section III, we propose a new method of statistical
learning for selecting the best divergence among the four
popular parametric families in any given data modeling task.
Our starting-point is the Tweedie distribution [22], which is
known to have a relationship with [-divergence [23], [24].
The Maximum Tweedie Likelihood (MTL) is in principle
a disciplined and straightforward method for choosing the
optimal 3 value. However, in order for this to be feasible in
practice, two shortcomings with the MTL method have to be
overcome: 1) Tweedie distribution is not defined for all j3; 2)
calculation of Tweedie likelihood is complicated and prone to
numerical problems for large 3. To overcome these drawbacks,
we propose here a novel distribution using an exponential over
the S-divergence with a specific augmentation term. The new
distribution has the following nice properties: 1) it is close to
the Tweedie distribution, especially at four important special
cases; 2) it exists for all 5 € R; 3) its likelihood can be calcu-
lated by standard statistical software. We call the new density
the Exponential Divergence with Augmentation (EDA). EDA
is a non-normalized density, i.e., its likelihood includes a
normalizing constant which is not analytically available. But,
since the density is univariate the normalizing constant can be
efficiently and accurately estimated by numerical integration.
The method of Maximizing the Exponential Divergence with
Augmentation Likelihood (MEDAL) thus gives a more robust
B selection in a wider range than MTL. 3 estimation on EDA
can also be carried out using parameter estimation methods,
e.g., Score Matching (SM) [25], specifically proposed for non-
normalized densities. In the experiments section, we show that
SM on EDA also performs as accurately as MEDAL.

Besides [-divergence, the MEDAL method is extended to
select the best divergence in other parametric families. We
reformulate a-divergence in terms of [-divergence after a
change of parameters so that o can be optimized using the
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MEDAL method. Our method can also be applied to non-
separable cases. We show the equivalence between [ and
~v-divergences, and between « and Rényi divergences by a
connecting scalar, which allows us to choose the best - or
Rényi-divergence by reusing the MEDAL method.

We tested our method with extensive experiments, whose re-
sults are presented in Section IV. We have used both synthetic
data with a known distribution and real-world data including
music, stock prices, and social networks. The MEDAL method
is applied to different learning problems: Nonnegative Matrix
Factorization (NMF) [26], [3], [1], Projective NMF [27], [28]
and Symmetric Stochastic Neighbor Embedding for visualiza-
tion [5], [6]. We also demonstrate that our method outperforms
Score Matching on Exponential Divergence distribution (ED),
a previous approach for S-divergence selection [29]. Conclu-
sions and discussions on future work are given in Section V.

II. INFORMATION DIVERGENCES

Many learning objectives can be formulated as an approxi-
mation of the form x ~ pu, where x > 0 is the observed data
(input) and p is the approximation given by the model. The
formulation for p totally depends on the task to be solved.
Consider Nonnegative Matrix Factorization: then x > 0 is a
data matrix and g is a product of two lower-rank nonnegative
matrices which typically give a sparse representation for the
columns of x. Other concrete examples are given in Section
IVv.

The approximation error can be measured by various in-
formation divergences. Suppose p is parameterized by ©.
The learning problem becomes an optimization procedure
that minimizes the given divergence D(x||u(©)) over ©.
Regularization may be applied for ® for complexity control.
For notational brevity we focus on definitions over vectorial x,
, © in this section, while they can be extended to matrices
or higher order tensors in a straightforward manner.

In this work we consider four parametric families of di-
vergences, which are the widely used a-, -, y- and Rényi-
divergences. This collection is rich because it covers most
commonly used divergences. The definition of the four fami-
lies and some of their special cases are given below.

o «a-divergence [10], [11] is defined as
Sl T — a4 (@ — 1)
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where D;, Dp, Dip, and Dy denote non-normalized
Kullback-Leibler, Pearson Chi-square, inverse Pearson
and Hellinger distances, respectively.
o [-divergence [30], [31] is defined as
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where Dgy and Dig denote the Euclidean distance and

Itakura-Saito divergence, respectively.
o 7-divergence [13] is defined as
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The normalized Kullback-Leibler (KL) divergence is a
special case of vy-divergence:
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where jz = IZ/ Z]‘ Z; and ,az = /Lz/ Zj M-
o Rényi divergence [32] is defined as
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p—

Dy(xlp) =

for p > 0. The Rényi divergence also includes the
normalized Kullback-Leibler divergence as its special
case when p — 1.

III. DIVERGENCE SELECTION BY STATISTICAL LEARNING

The above rich collection of information divergences basi-
cally allows great flexibility to the approximation framework.
However, practitioners must face a choice problem: how to
select the best divergence in a family? In most existing
applications the selection is done empirically by the human.
A conventional automatic selection method is cross-validation
[33], [34], where the training only uses part of the entries
of x and the remaining ones are used for validation. This
method has a number of drawbacks. First, it is only applicable
to the divergences where the entries are separable (e.g. a-
or B-divergence). Leaving out some entries for - and Rényi
divergences is infeasible due to the logarithm or normalization.
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Second, separation of some entries is not applicable in applica-
tions where all entries are needed in the learning, for example,
cluster analysis. Third, cross-validation errors defined with dif-
ferent divergences are not comparable because the comparison
has no statistical meaning. Fourth, quantifying cross-validation
errors by Dg(z||p) often selects 5 with the largest absolute
values. Let x; and p; the validation entries. For any z; € (0,1)
and p; € (0,1), we have limg_, 4o Dg(z;i||ns) = 0 by
I’Hopital’s rule. That is, the selection in this case does not
respect the data at all, but trivially picks the largest candidate
(i.e. +00). We demonstrate such failure in Section IV-C3.
Similarly, the selection is also problematic for any x; > 1
and p; > 1, where limg_, o, Dg(z||p) = 0.

Our proposal here is to use the familiar and proven tech-
nique of maximum likelihood estimation for automatic di-
vergence selection, using a suitably chosen and very flexible
probability density model for the data. In the following we
discuss this statistical learning approach for automatic diver-
gence selection in the family of 3-divergences, followed by
its extensions to the other divergence families.

A. Selecting (B-divergence

1) Maximum Tweedie Likelihood (MTL): We start from the
probability density function (pdf) of an exponential dispersion
model (EDM) [22]:

(a6, 6.) = (e, 6.0)exp | 508 = s(8)| 10
where ¢ > 0 is the dispersion parameter, 6 is the canonical
parameter, and x(f) is the cumulant function (when ¢ = 1 its
derivatives w.r.t. # give the cumulants). Such a distribution has
mean p = £’(#) and variance V (i, p) = ¢x” (). This density
is defined for x > 0, thus u > 0.

A Tweedie distribution is an EDM whose variance has a
special form, V(u) = pP with p € R\(0,1). The canonical
parameter and the cumulant function that satisfy this property
are [22]

'ulfp_l . HQ*P_l .
9 — 1-p lfp 7é 1 , KZ(H) — 2—p lfp 7& 2
Inp, ifp=1 Inp, ifp=2
an

Note that In p is the limit of ”tt_l as t — 0. Finite analytical
forms of f(x,®,p) in Tweedie distribution are generally
unavailable. The function can be expanded with infinite series
[35] or approximated by saddle point estimation [36].

It is known that the Tweedie distribution has a connection to
[B-divergence (see, e.g., [23], [24]): maximizing the likelihood
of Tweedie distribution for certain p values is equivalent to
minimizing the corresponding divergence with 5 = 1 —p. Es-
pecially, the gradients of the log-likelihood of Gamma, Poisson
and Gaussian distributions over p,; are equal to the ones of -
divergence with 5 = —1,0, 1, respectively. This motivates a 3-
divergence selection method by Maximum Tweedie Likelihood
(MTL).

However, MTL has the following two shortcomings. First,
Tweedie distribution is not defined for p € (0,1). That is, if
the best 5 = 1 — p happens to be in the range (0, 1), it cannot

be found by MTL; in addition, there is little research on the
Tweedie distribution with 8 > 1 (p < 0). Second, f(z, ¢, p)
in Tweedie distribution is not the probability normalizing
constant (note that it depends on x), and its evaluation requires
ad hoc techniques. The existing software using the infinite
series expansion approach [35] (see Appendix A) is prone to
numerical computation problems especially for —0.1 < 8 < 0.
There is no existing implementation that can calculate Tweedie
likelihood for 5 > 1.

2) Maximum Exponential Divergence with Augmentation
Likelihood (MEDAL): Our answer to the above shortcomings
in MTL is to design an alternative distribution with the
following properties: 1) it is close to the Tweedie distribution,
especially for the four crucial points when 5 € {—2,—1,0,1};
2) it should be defined for all 5 € R; 3) its pdf can be evaluated
more robustly by standard statistical software.

From (10) and (11) the pdf of the Tweedie distribution is

written as
. B o pft )}

pTw(mvﬂagévﬁ) f(xvd)vﬁ)exp |:¢ ( B ﬁ"’l (12)
w.r.t. £ instead of p, using the relation 5 = 1 — p. This holds
when 8 # 0 and 5 # —1. The extra terms 1/(1 — p) and
1/(2—p) in (11) have been absorbed in f(z, ¢, 3). The cases
B8 =0 or 8 = —1 have to be analyzed separately.

To make an explicit connection with S-divergence defined

in (2), we suggest a new distribution given in the following
form:

pappmx(x; L, ¢7 /8) = g(a:, ¢7/8) exp {_;Dﬁ(x“L)}

P+

— g0 8)ew |5 (505

1

zpP - MB-H)]
B B+1)]°
(13)

Now the S-divergence for scalar x appears in the exponent, and
g(x,®,3) will be used to approximate this with the Tweedie
distribution. Ideally, the choice

B+

gz, $,8) = f(x,6,8)/ exp [; (_6(6+1))]

would result in full equivalence to Tweedie distribution, as
seen from (12). However, because f(z, ¢, ) is unknown in
the general case, such g is also unavailable.

We can, however, try to approximate g using the fact that
Dapprox Must be a proper density whose integral is equal to one.
From (13) it then follows

exp l M/H—l
pB+1
1 e

— /dxg($a¢’ﬂ) P Lﬁ <_5(’B+1) : xgﬁ)}(”

This integral is, of course, impossible to evaluate because we
do not even know the function inside. However, the integral
can be approximated nicely by Laplace’s method. Laplace’s
approximation is

b 2T
Mh(x) ~ Mh(zo)
[ e @t & o e
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where z¢ = arg max, h(x) and M is a large constant.

In order to approximate (14) by Laplace’s method, 1/¢
takes the role of M and thus the approximation is valid for
small ¢. We need the maximizer of the exponentiated term
h(z) = —% % This term has a zero first derivative
and negative second derivative, i.e., it is maximized, at z = pu.
Thus, Laplace’s method gives us

l,uﬁ""l
pLSMJ

21 l B MBH Mﬁﬂﬂ
—uﬁ-wg(“’d”ﬂ)exp{qﬁ( RS

| 2ne 1 pftt
- oo 5]

The approximation gives g(u, ¢,8) = \/7 pB=1/2 which
suggests the function
1 (B-1)
(B-1/2 _ 1 _
g(z,0,8) = \/mm \/mexp [ 5 nx}

Putting this result into (13) as such does not guarantee a
proper pdf however, because it is an approximation, only valid
at the limit ¢ — 0. To make it proper, we have to add a
normalizing constant into the density in (13).

The pdf of the final distribution, for a scalar argument z,
thus becomes

1 1
p: rxx;ﬂuﬁvaﬁ :exp{Rx,B ——-D (E/_L}
appro. ( ) Z(M767¢) ( ) ¢ ﬁ( || )
5)
where Z(u,[,¢) is the normalizing constant counting for

the terms which are independent of x, and R(z, () is an
augmentation term given as

R@.p) =25

This pdf is a proper density for all 3 € R, which is
guaranteed by the following theorem.

Theorem 1: Let f(x) = Elnﬂc— éDﬁ(xHu)}
The improper integral fo x)dx converges.
Proof: Let q = —‘ + 1+ ¢ with any ¢ € (0,00),

Inx.

(16)
o

- . B-1
and g(x) = x~9. By these definitions, we have q > ‘7 ,

o ) olne < 0 < Dyelp),
ie. 0 < f(x) < g(x). By Cauchy convergence test, we
know that J;° g(x)dz is convergent because ¢ > 1, and so
is f 1 x)dz. Obv10usly f(z) is continuous and bounded for
z € [0, 1] Therefore, for z > 0, [° f(z)dx = fo x)dx +
J;° f(x)dx also converges.

Finally, for vectorial x, the pdf is a product of the margmal
densities:

and then for x > 1,

1Dﬂ<x|u>}

PEDA (X5 1, B, ¢) = mexp {R(Xaﬁ) =%
(17)

where Dg(x||p) is defined in (2) and

R(x,0) = %Zlnxi.

We call (17) the Exponential Divergence with Augmentation
(EDA) distribution, because it applies an exponential over an
information divergence plus an augmentation term.

The log-likelihood of the EDA density can be written as

= Zlnp(fu.uza 55 ¢)

-1, 1
Z{ 2 o7

(18)

Inp(x; p, 3, )

Inx;

(willps) — 0 Z(us, B, ¢>>} (19)

due to the fact that Dg(x||p) in Eq. (2) and the augmentation
term in (18) are separable over x;, (i.e. x; are independent
given ;). The best 8 is now selected by

B* = arg . {mgx Inp(x; u, B, ¢)} ; (20)
given p = argmin,, Dg(x||n). We call the new divergence
selection method Maximum EDA Likelihood (MEDAL).

Let us look at the four special cases of Tweedie distribu-
tion: Gaussian (N), Poisson (PO), Gamma (G) and Inverse
Gaussian (ZN). They correspond to 3 = 1,0,—1, —2. For
simplicity of notation, we may drop the subscript ¢ and write
z and p for one entry in x and p. Then, the log-likelihoods
of the above four special cases are

npp (25, 0) = = 5 ln(%sb) - %(x -7
Inppo(z; p) =z lnu —p—Inl(z+1),
~rlnpg —p—In(2rx)/2 — 2 lnz + «,
Inpg(z: 1/, o) =(1/6 = e = -
— (1/¢) In(ép) —InT(1/9),

I pr (i, 1/6) = — 3 n(2nga) — (;5 Ly ;x) ,
where in the Poisson case we employ Stirling’s approxima-
tion!. To see the similarity of these four special cases with the
general expression for the EDA log-likelihood in Eq. (19),
let us look at one term in the sum there. It is a fairly
straightforward exercise to plug in the [-divergences from
Egs. (3,4,5,6) and the augmentation term from Eq. (18) and
see that the log-likelihoods coincide. The normalizing term
In Z(u, B, ¢)] for these special cases can be determined from
the corresponding density.

In general, the normalizing constant Z(u,(,¢) is in-
tractable except for a few special cases. Numerical evaluation
of Z(w,B,¢) can be implemented by standard statistical
software. Here we employ the approximation with Gauss-
Laguerre quadratures (details in Appendix B).

Finally, let us note that in addition to the maximum likeli-
hood estimator, Score Matching (SM) [25], [37] can be applied

"The case 8 = 0 and ¢ # 1 does not correspond to Poisson distribution,

but the transformation pgpm(z; i, ¢, 1) = ppo(x/P; u/P)/¢ can be used
to evaluate the pdf.
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to estimation of 3 as a density parameter (see Section IV-A). In
a previous effort, Lu et al. [29] proposed a similar exponential
divergence (ED) distribution

PED(X; 1, B3) o< exp [—Dg(x||p)], (1)

but without the augmentation. It is easy to show that ED also
exists for all 5 by changing ¢ = 1+ ¢ in the proof of Theorem
1. We will empirically illustrate the discrepancy between ED
and EDA in Section IV-A, showing that the selection based
on ED is however inaccurate, especially for 3 < 0.

B. Selecting a-divergence

We extend the MEDAL method to a-divergence selection.
This is done by relating a-divergence to (-divergence with a
nonlinear transformation between « and 3. Let y; = &/,
m; = pu$/a** and B =1/a — 1 for a # 0. We have

1
Da(wlime) =55y (v + Bmi* = (8 + Dy
_of (e Lap pl
a—1\a? a a?  aa?eqg2i-o)

=Da (| i)

This relationship allows us to evaluate the likelihood of
and « using y; and f:

dyi

dl’i
z2 1

_ . . 1

= p(yi; mi, B, ¢) o2(a—1/2)

= p(yi;mi, B, ¢)y; ° |8 +1]

In vectorial form, the best « for D, (x||u) is then given by
a* =1/(8* + 1) where

p(l‘i;ui,a7¢) = p(ylamlaﬂa¢)

p* = argmax { mex [Inp(y;m, )

—Blny; +In|8 + 1|]},

where m = arg min,, D3 (y||n). This transformation method
can handle all « except a — 0 since it corresponds to 5 — oo.

It is important to notice that in our method the transforma-
tion takes place not only from « to (3, but also from x to y
and from p to m. Therefore the selected 3 for y and m is in
general not the same with the one for z and p.

(22)

C. Selecting v- and Rényi divergences

Above we presented the selection methods for two families
where the divergence is separable over the tensor entries. Next
we consider selection among ~y- and Rényi divergence families
where their members are not separable. Our strategy is to
reduce y-divergence to 3-divergence with a connecting scalar.
This is formally given by the following result.

Theorem 2: For x > 0 and 7 € R,

arg ann(} D, (x||p) = arg anné min Dg_yr(x|lcp)| (23)

The proof is done by zeroing the derivative right hand side
with respect to ¢ (details in Appendix C).

Theorem 2 states that with a positive scalar, the learning
problem formulated by a ~-divergence is equivalent to the
one by the corresponding S-divergence. The latter is separable
and can be solved by the methods described in the Section
III-A. An example is between normalized KL-divergence (in
~v-divergence) and the non-normalized KL-divergence (in (-
divergence) with the optimal connecting scalar ¢ = %’—z
Example applications on selecting the best ~y-divergence are
given in Section IV-C.

Similarly, we can also reduce a Rényi divergence to its
corresponding a-divergence with the same proof technique
(see Appendix C).

Theorem 3: For x > 0 and 7 > 0,

arg LIIZH& D, (x||p) = arg anlré rglgl Dooyr(X||ep) | . (24)

IV. EXPERIMENTS

In this section we demonstrate the proposed method on
various data types and learning tasks. First we provide the
results on synthetic data, whose density is known, to compare
the behavior of MTL, MEDAL and the score matching method
[29]. Second, we illustrate the advantage of the EDA density
over ED. Third, we apply our method on «- and SB-divergence
selection in Nonnegative Matrix Factorization (NMF) on real-
world data including music and stock prices. Fourth, we test
MEDAL in selecting non-separable cases (e.g. vy-divergence)
for Projective NMF and s-SNE visualization learning tasks
across synthetic data, images, and a dolphin social network.

A. Synthetic data

1) B-divergence selection: We use here scalar data gen-
erated from the four special cases of Tweedie distributions,
namely, Inverse Gaussian, Gamma, Poisson, and Gaussian
distributions. We simply fit the best Tweedie, EDA or ED
density to the data using either the maximum likelihood
method or score matching (SM).

In Fig. 1 (first row), the results of the Maximum Tweedie
Likelihood (MTL) are shown. The /3 value that maximizes
the likelihood in Tweedie distribution is consistent with the
true parameters, i.e., -2, -1, 0 and 1 respectively for the above
distributions. Note that Tweedie distributions are not defined
for 8 € (0, 1), but S-divergence is defined in this region, which
will lead to discontinuity in the log-likelihood over .

The second and third rows in Fig. 1 present results of the
exponential divergence density ED given in Eq. (21). The log-
likelihood and negative score matching objectives [29] on the
same four datasets are shown. The estimates are consistent
with the ground truth Gaussian and Poisson data. However, for
Gamma and Inverse Gaussian data, both § estimates deviate
from the ground truth. Thus, estimators based on ED do
not give as accurate estimates as the MTL method. The ED
distribution [29] has an advantage that it is defined also for
B € (0,1). In the above, we have seen that § selection by
using ED is accurate when 8 — 0 or = 1. However, as
explained in Section III-A2, in the other cases ED and Tweedie
distributions are not the same because the terms containing
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the observed variable in these distributions are not exactly the
same as those of the Tweedie distributions.

EDA, the augmented ED density introduced in Sec-
tion III-A, not only has both the advantage of continuity but
also gives very accurate estimates for 5 < 0. The MEDAL log-
likelihood curves over /3 based on EDA are given in Fig. 1
(fourth row). In the (3 selection of Eq. (20), the ¢ value
that maximizes the likelihood with § fixed is found by a
grid search. The likelihood values are the same as those of
special Tweedie distributions and there are no abrupt changes
or discontinuities in the likelihood surface. We also estimated

[ for the EDA density using Score Matching, and curves of
the negative SM objective are presented in the bottom row of
Fig. 1. They also recover the ground truth accurately.

2) a-divergence selection: There is only one known gen-
erative model for which the maximum likelihood estima-
tor corresponds to the minimizer of the corresponding «
divergence. It is the Poisson distribution. We thus reused
the Poisson-distributed data of the previous experiments with
the [-divergence. In Fig. 2a, we present the log-likelihood
objective over « obtained with Tweedie distribution (MTL)
and the transformation from Section III-B. The ground truth
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Fig. 2. Log-likelihood of (a) Tweedie, (b) ED, and (c) EDA distributions for a-selection. In the Tweedie plot, blanks correspond to 8 = 1/« — 1 values for
which a Tweedie distribution pdf does not exist or cannot be evaluated, i.e., 8 € (0,1) U (1, 00). In (d), negative SM objective function values are plotted

for EDA.

a — 1 is successfully recovered with MTL. However, there
are no likelihood estimates for o« € (0.5,1), corresponding
to 8 € (0,1) for which no Tweedie distributions are defined.
Moreover, to our knowledge there are no studies concerning
the pdf’s of Tweedie distributions with 3 > 1. For that reason,
the likelihood values for e € [0,0.5) are left blank in the plot.

It can be seen from Fig. 2b and 2c, that the augmentation
in the MEDAL method also helps in « selection. Again, both
ED and EDA solve most of the discontinuity problem except
a = 0. Selection using ED fails to find the ground truth
which equals 1, which is however successfully found by the
MEDAL method. SM on EDA recovers the ground truth as
well (Fig. 2d).

B. Divergence selection in NMF

The objective in nonnegative matrix factorization (NMF)
is to find a low-rank approximation to the observed data
by expressing it as a product of two nonnegative matrices,
ie, V.~ V = WH with V ¢ R{*N | W ¢ REXF
and H € Rf *N_ This objective is pursued through the
minimization of an information divergence between the data
and the approximation, i.e., D(V||V). The divergence can be
any appropriate one for the data/application such as f3, a, 7,
Rényi, etc. Here, we chose the 3 and « divergences to illustrate
the MEDAL method for realistic data.

The optimization of S-NMF was implemented using the
standard multiplicative update rules [23], [38]. Similar mul-
tiplicative update rules are also available for a-NMF [23].
Alternatively, the algorithm for S-NMF can be used for a-
divergence minimization as well, using the transformation
explained in Section III-B.

1) A Short Piano Excerpt: We consider the piano data used
in [21]. It is an audio sequence recorded in real conditions,
consisting of four notes played all together in the first measure
and in all possible pairs in the subsequent measures. A
power spectrogram with analysis window of size 46 ms was
computed, leading to F' = 513 frequency bins and N = 676
time frames. These Illake up the data matrix V, for which a
matrix factorization V.= WH with low rank K = 6 is sought
for.

In Fig. 3a and 3b, we show the log-likelihood values of
the MEDAL method for 5 and «, respectively. For each
parameter value $ and «, the multiplicative algorithm for the
respective divergence is run for 100 iterations and likelihoods

4><106 Piano excerpt 5 104 Piano excerpt
< 2 < 1/
o o
w w
3 0| 3 0
o o
£ £
g-2 g
o 5
84 82
=2 0 1 2 2 -1 0 1 2
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<
o
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(]
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8 2
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o
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2
£ 0
15
<1
-2 0 2
B (best B=-1)
¢) B div.
Fig. 3. (a, b) Log likelihood values for 3 and «a for the spectrogram of

a short piano excerpt with F' = 513, N = 676, K = 6. (c) Negative SM
objective for 3.

are evaluated with mean values calculated from the returned
matrix factorizations. For each value of 8 and «, the highest
likelihood w.r.t. ¢ (see Eq. (20)) is found by a grid search.

The found maximum likelihood estimate 5 = —1 corre-
sponds to Itakura-Saito divergence, which is in harmony with
the empirical results presented in [21] and the common belief
that IS divergence is most suitable for audio spectrograms. The
optimal « value value was 0.5 corresponding to Hellinger dis-
tance. We can also see that the log likelihood value associated
with a = 0.5 is still much less than the one for § = —1. SM
also finds 5 = —1 as can be seen from Fig. 3c.

2) Stock Prices: Next, we repeat the same experiment on
a stock price dataset which contains Dow Jones Industrial
Average. There are 30 companies included in the data. They
are major American companies from various sectors such
as services (e.g., Walmart), consumer goods (e.g., General
Motors) and healthcare (e.g., Pfizer). The data was collected
from 3rd January 2000 to 27th July 2011, in total 2543 trading
dates. We set K = 5 in NMF and masked 50% of the data
by following [39]. The stock data curves are displayed in
Fig. 4 (left).
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Fig. 4. Top: the stock data. Bottom left: the EDA log-likelihood for 5 €
[—2, 2]. Bottom right: negative SM objective function for 8 € [—2, 2].

The EDA likelihood curve with 8 € [—2,2] is shown in
Figure 4 (bottom left). We can see that the best divergence
selected by MEDAL is § = 0.4. The corresponding best
¢ = 0.006. These results are in harmony with the findings
of Tan and Févotte [39] using the remaining 50% of the
data as validation set, where they found that 8 € [0,0.5]
(mind that our /3 values equal theirs minus one) performs
well for a large range of ¢’s. Differently, our method is more
advantageous because we do not need additional criteria nor
data for validations. In Figure 4 (bottom right), negative SM
objective function is plotted for 5 € [—2,2]. With SM, the
optimal S is found to be 1.

C. Selecting ~y-divergence

In this section we demonstrate that the proposed method
can be applied to applications beyond NMF and to non-
separable divergence families. To our knowledge, no other
existing methods can handle these two cases.

1) Multinomial data: We first exemplify ~y-divergence se-
lection for synthetic data drawn from a multinomial dis-
tribution. We generated a 1000-dimensional stochastic vec-
tor p from the uniform distribution. Next we drew x ~
Multinomial(n, p) with n = 107. The MEDAL method is
applied to find the best ~y-divergence for the approximation
of x by p.

Fig. 6 (1st row, left) shows the MEDAL log-likelihood.
The peak appears when v = 0, which indicates that the
normalized KL-divergence is the most suitable one among the
~-divergence family. Selection using score matching of EDA
gives the best «y also close to zero (Fig. 6 1st row, right). The
result is expected, because the maximum likelihood estimator
of p in multinomial distribution is equivalent to minimizing
the KL-divergence over p. Our finding also justifies the
usage of KL-divergence in topic models with the multinomial
distribution [40], [7].

2) Projective NMF: Next we apply the MEDAL method
to Projective Nonnegative Matrix Factorization (PNMF) [27],

[28] based on ~-divergence [13], [19]. Given a nonnegative
matrix V € RiXN , PNMF seeks a low-rank nonnegative

matrix W € R”* (K < F) that minimizes D., (V||\7),

where V.= WWTV. PNMF is able to produce a highly
orthogonal W and thus finds its applications in part-based
feature extraction and clustering analysis, etc. Different from
conventional NMF (or linear NMF) where each factorizing
matrix only appears once in the approximation, the matrix
W occurs twice in V. Thus it is a special case of Quadratic
Nonnegative Matrix Factorization (QNMF) [41].

We choose PNMF for two reasons: 1) we demonstrate
the MEDAL performance on QNMF besides the linear NMF
already shown in Section IV-B; 2) PNMF contains only one
variable matrix in learning, without the issue of how to
interleave the updates of different variable matrices.

We first tested MEDAL on a synthetic dataset. We generated
a diagonal blockwise data matrix V of size 50 x 30, where two
blocks are of sizes 30 x 20 and 20 x 10. The block entries are
uniformly drawn from [0, 10]. We then added uniform noise
from [0,1] to the all matrix entries. For each -y, we ran the
multiplicative alg(/)\rithm of PNMF by Yang and Oja [28], [4]
to obtain W and V. The MEDAL method was then applied to
select the best . The resulting approximated log-likelihood for
v € [—2, 2] is shown in Fig. 6 (2nd row). We can see MEDAL
and score matching of EDA give similar results, where the best
~ appear at —0.76 and —0.8, respectively. Both resulting W’s
give perfect clustering accuracy of data rows.

We also tested MEDAL on the swimmer dataset [42] which
is popularly used in the NMF field. Some example images
from this dataset are shown in Fig. 5 (left). We vectorized
each image in the dataset as a column and concatenated the
columns into a 1024 x 256 data matrix V. This matrix is then
fed to PNMF and MEDAL as in the case for the synthetic
dataset. Here we empirically set the rank to KX = 17 according
to Tan and Févotte [43] and Yang et al. [44]. The matrix W
was initialized by PNMF based on Euclidean distance to avoid
poor local minima. The resulting approximated log-likelihood
for v € [—1, 3] is shown in Figure 6 (3rd row, left). We can see
a peak appearing around 1.7. Zooming in the region near the
peak shows the best v = 1.69. The score matching objective
over v values (Fig. 6 3rd row, right) shows a similar peak
and the best ~y very close to the one given by MEDAL. Both
methods result in excellent and nearly identical basis matrix
(W) of the data, where the swimmer body as well as four
limbs at four angles are clearly identified (see Fig. 5 bottom
TOW).

3) Symmetric Stochastic Neighbor Embedding: Finally, we
show an application beyond NMF, where MEDAL is used to
find the best ~y-divergence for the visualization using Symmet-
ric Stochastic Neighbor Embedding (s-SNE) [5], [6].

Suppose there are n multivariate data samples {x;},_, with
x; € RP and their pairwise similarities are represented by
an n X n symmetric nonnegative matrix P where P;; = 0
and } . P;; = 1. The s-SNE visualization seeks a low-
dimensional embedding Y = [y1,ya2,... ,yn]T € R™*? such
that pairwise similarities in the embedding approximate those
in the original space. Generally d = 2 or d = 3 for easy
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Fig. 5. Swimmer dataset: (top) example images; (bottom) the best PNMF
basis (W) selected by using (bottom left) MEDAL and (bottom right) score
matching of EDA. The visualization reshapes each column of W to an image
and displays it by the Matlab function imagesc.

visualization. Denote ¢;; = q(|ly; — y;||*) with a certain
kernel function g, for example ¢;; = (1+ |ly; — yj||2)71.
The pairwise similarities in the embedding are then given by
Qij = 4ij/ Y pips Wt~ The s-SNE target is that Q is as
close to P as possible. To measure the dissimilarity between
P and Q, the conventional s-SNE uses the Kullback-Leibler
divergence Dy (P||Q). Here we generalize s-SNE to the
whole family of y-divergences as dissimilarity measures and
select the best divergence by our MEDAL method.

We have used a real-world dolphins dataset’. It is the
adjacency matrix of the undirected social network between
62 dolphins. We smoothed the matrix by PageRank random
walk in order to find its macro structures. The smoothed
matrix was then fed to s-SNE based on ~-divergence, with
v € [-2,2]. The EDA log-likelihood is shown in Fig. 6
(4th row, left). By the MEDAL principle the best divergence
is v = —0.6 for s-SNE and the dolphins dataset. Score
matching of EDA also indicates the best 7 is smaller than
0. The resulting visualizations created by s-SNE with the
respective best gamma-divergence are shown in Fig. 7, where
the node layouts by both methods are very similar. In both
visualizations we can clearly see two dolphin communities.

In contrast, we demonstrate the failure of selecting v by
minimum cross-validation error (defined with the connected
[-divergence in Eq. 23). We have explored the integer y values
in [—10, 40]. In Fig. 8 (left), we can see that a larger ~ yields
smaller cross-validation error; the smallest error appears at

2available at http://www-personal.umich.edu/~mejn/netdata/
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Fig. 6.  Selecting the best ~-divergence: (1st row) for multinomial data,

(2nd row) in PNMF for synthetic data, (3rd row) in PNMF for the swimmer
dataset, and (4th row) in s-SNE for the dolphins dataset; (left column)
using MEDAL and (right column) using score matching of EDA. The red star
highlights the peak and the small subfigures in each plot shows the zoom-in
around the peak. The sub-figures in the 3rd row zoom in the area near the
peaks.

~v = 40. However, the resulting s-SNE visualization by using
v = 40 in Fig. 8 (right) is much worse than the ones by using
our proposed methods (Fig. 7) in terms of identifying the two
dolphin communities.

V. CONCLUSIONS

We have presented a new method called MEDAL to au-
tomatically select the best information divergence in a para-
metric family. Our selection method is built upon a statistical
learning approach, where the divergence is learned as the
result of standard density parameter estimation. Maximizing
the likelihood of the Tweedie distribution is a straightforward
way for selecting [-divergence, which however has some
shortcomings. We have proposed a novel distribution, the
Exponential Divergence with Augmentation (EDA), which
overcomes these shortcomings and thus can give a more robust
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Fig. 7. Visualization of the dolphins social network with the best « using
(top) MEDAL and (bottom) score matching of EDA. Dolphins and their social
connections are shown by circles and lines, respectively. The background
illustrates the node density by the Parzen method [45].
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Fig. 8.  Selecting the best v by minimum cross-validation error for the
dolphins social network: (left) logorithm of cross-validation errors for
various -y values, (right) visualization of the dolphins social network with
v = 40.

selection for the parameter over a wider range. The new
method has been extended to a-divergence selection by a
nonlinear transformation. Furthermore, we have provided new
results that connect the - and (-divergences, which enable
us to extend the selection method to non-separable cases.
The extension also holds for Rényi divergence with similar
relationship to a-divergence. As a result, our method can be
applied to most commonly used information divergences in
learning.

We have performed extensive experiments to show the
accuracy and applicability of the new method. Comparison
on synthetic data has illustrated that our method is superior to
Maximum Tweedie Likelihood, i.e., it finds the ground truth
as accurately as MTL, while being defined on all values of 3
and being less prone to numerical problems (no abrupt changes
in the likelihood). We also showed that a previous estimation
approach by Score Matching on Exponential Divergence dis-
tribution (ED, i.e., EDA before augmentation) is not accurate,
especially for 5 < 0. In the application to NMF, we have
provided experimental results on various kinds of data includ-

10

ing audio and stock prices. In the non-separable cases, we
have demonstrated selecting ~y-divergence for synthetic data,
Projective NMF, and visualization by s-SNE. In those cases
where the correct parameter value is known in advance for the
synthetic data, or there is a wide consensus in the application
community on the correct parameter value for real-world data,
the MEDAL method gives expected results. These results show
that the presented method has not only broad applications but
also accurate selection performance. In the case of new kinds
of data, for which the appropriate information divergence is
not known, the MEDAL method provides a disciplined and
rigorous way to compute the optimal parameter values.

In this paper we have focused on information divergence for
vectorial data. There exist other divergences for higher-order
tensors, for example, LogDet divergence and von Newmann
divergence (see e.g. [46]) that are defined over eigenvalues of
matrices. Selection among these divergences remains an open
problem.

Here we mainly consider a positive data matrix and selecting
the divergence parameter in (—oo, +00). Tweedie distribution
has no support for zero entries when 5 < 0 and thus gives
zero likelihood of the whole matrix/tensor by independence. In
future work, extension of EDA to accommodate nonnegative
data matrices could be developed for 5 > 0.

MEDAL is a two-phase method: the 3 selection is based
on the optimization result of p. Ideally, both variables should
be selected by optimizing the same objective. For maximum
log-likelihood estimator, this requires that the negative log-
likelihood equals the [S-divergence, which is however infea-
sible for all 8 due to intractability of integrals. Non-ML
estimators could be used to attack this open problem.

The EDA distribution family includes the exact Gaussian,
Gamma, and Inverse Gaussian distributions, and approximated
Poisson distribution. In the approximation we used the first-
order Stirling expansion. One could apply higher-order expan-
sions to improve the approximation accuracy. This could be
implemented by further augmentation with higher-order terms
around 5 — 0.
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APPENDIX A
INFINITE SERIES EXPANSION IN TWEEDIE DISTRIBUTION

In the series expansion, an EDM random variable is repre-
sented as a sum of GG independent Gamma random variables
T = Z? Yg» Where G is Poisson distributed with parameter
A= %; and the shape and scale parameters of the Gamma
distribution are —a and b, with @ = $=£ and b = ¢(p—1)uP~".

The pdf of the Tweedie distribution is obtained analytically

atz = 0 as e »@ . For x > 0 the function f(z,0,p) =
%Zj‘;l W;(z, ¢, p), where for 1 < p < 2
x 7% (p — 1))

W= GG (e

(25)

0162-8828 (c) 2013 |EEE. Personal useis permitted, but republication/redistribution requires |EEE permission. See
http://www.ieee.org/publications_standards/publicationg/rights/index.html for more information.



This article has been accepted for publication in afuture issue of thisjournal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPAMI.2014.2366144, | EEE Transactions on Pattern Analysis and Machine Intelligence

and for p > 2 Dropping the constant, and by Lemma 4, the above is

101+ ja)¢ie=D(p —1)ia . ‘ equivalent to minimizing
W; = (—=1)? sin(—mja). (26)
T PA+j)(p - 1)izie . s
This infinite summation needs approximation in practice. B+ B) Aln Z/”L (1+5)In sz
Dunn and Smyth [35] described an approach to select a subset
of these infinite terms to accurately approximate f(z,,p). Adding a constant S In Z x1+ﬂ the objective be-
1+ >

In their approach, Stirling’s approximation of the Gamma P . .
) . o ) . comes minimizing y-divergence (replacing 8 with -; see Eq.
functions are used to find the index j which gives the highest )

value of the function. Then, in order to find the most significant We can apply the similar technique to prove Theorem 3
region, the indices are progressed in both directions until For a € R\{0, 1}, zeroin D4 (ch/.l,) ives '
negligible terms are reached. & £

. 1/«
APPENDIX B ¢ = S G
GAUSS-LAGUERRE QUADRATURES L . ’
) o Putting it back, we obtain
This method (e.g. [47]) can evaluate definite integrals of the
form D, (x]||c* ) (32)
0o n 1—a\ a
2 1 R
e “f(z)dz ~ Zf(zl)w“ (27) - = ar; + (1 —a) | &2L277 1L
/0 ; ol —a) ZZ: 4o 251 Z
where z; is the ith root of the n-th order Laguerre polynomial (33)
L,(z), and the weights are given by _oN 1/a I-a
— 28 g | (i i (34)
Y G 12IR(w) (23) TS ’
The recursive definition of L,,(z) is given by 1o Ve
1 , . @i
1 __ L o[t ST 3
Lii(2) = = [0 1= La(2) ~nlos(2)), @9 a7 |25 (zj M) T O

with Lo(z) = 1 and L1(z) = 1 — 2. In our experiments, we

used the Matlab implementation by Winckel® with n = 5000. Dropping the constant S5, and by Lemma 4, minimizing

the above is equivalent to minimization of (for o > 0)

-«
1 i
In E g al (36)
-1 P Zj 122
Lemma 4: argmin, af(z) = argmin, aln f(z) for a € R

and f(z) > 0. Adding a constant 2~ 1In} " x; to the above, the objective
The proof of the lemma is simply by the monotonicity of In.  becomes minimizing Rényi-divergence (replacing o with p;
Next we prove Theorem 2. For § € R\{—1,0}, zeroing see Eq. (9)).
W gives The proofs for the special cases are similar, where the main
) steps are given below

APPENDIX C
PROOFS OF THEOREMS 2 AND 3

c* = 2i x;lf_lﬁ (30) e B=7~v—0(or « =p — 1): zeroing %W gives
2 i = Z’—I Putting it back, we obtain Dg_,o(x||c*p) =

Putting it back to min,, min. Dg(x||cp), we obtain: (32 i) Dy—o(x||p).
_ . 0Dg_, 1(x||cll') _
minmin D (x||cp) . 51 = Z — —1: zeroing —£=—"=""F gjves ¢* =
TR 27 2_i 4> where M is the length of x. Putting it back,

1 W 1+ we obtain Dg_, 1 (x||c*p) = M D, _1(x||p).
— i 1+p Lok ODa—o(x|lcp) s
=min ——— + e a=p— 0: zeroing “=2=3 X gives
w B+ A) Z ﬁz< 1+B ) a=p zeromng e g

B ¢ =exp (ZZ s lnﬁj) .
—(1+5)Z (E 7M]u> >, i

St
Putting it back, we obtain
(Z s 148
i Tiflb; )

e ] Daso(xl[c" ) = exp( Zm) >

where fi; = fi;/ ), j1;. Dropping the constant ), x;,
3available at http://www.mathworks.se/matlabcentral/fileexchange/ minimizing DQHO(X‘ |C* [L) is equivalent to minimization

—mini1 5 _
e BL+P) Z,;:xz
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