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Linear and Nonlinear Projective Nonnegative Matrix
Factorization
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Abstract—A variant of nonnegative matrix factorization Another remarkable finding [12], [13] connects the non-
(NMF) which was proposed earlier is analyzed here. It is called negative matrix factorization to the classical K-meanssclu
Projective Nonnegative Matrix Factorization (PNMF). The new  taring gbjective. This in turn associates NMF with Printipa

method approximately factorizes a projection matrix, minimizing - - .
the reconstruction error, into a positive low-rank matrix and its Component Analysis (PCA) for effectively finding the K-

transpose. The dissimilarity between the original data matrix and Means clusters [14]. The nonnegativity constraint thavipes

its approximation can be measured by the Frobenius matrix norm sparseness can lead to better approximations of the cluster
or the modified Kullback-Leibler divergence. Both measures are indicators than direct optimization in the discrete space.
minimized by multiplicative update rules, whose convergence is | [15], Yuan and Oja introduced a variant callBcbjective

proven for the first time. Enforcing orthonormality to the basic . . o . .
objective is shown to lead to an even more efficient update Nonnegative Matrix FactorizatiofPNMF), which approxi-

rule, which is also readily extended to nonlinear cases. The Mates a data matrix by its nonnegative subspace projection.
formulation of the PNMF objective is shown to be connected Compared with NMF, the PNMF algorithm involves con-
to a variety of existing nonnegative matrix factorization methods siderably fewer parameters but is able to generate a much
and clustering approaches. In addition, the derivation using La- sparser factorized matrix, which is desired for both featur

grangian multipliers reveals the relation between reconstruction extraction and clustering. Its relations to sparseness tand
and sparseness. For kernel principal component analysis with g p

the binary constraint, useful in graph partitioning problems, K-means (?IusFering haV? b?en analyzed in [16]3 [17], with
the nonlinear kernel PNMF provides a good approximation some applications in facial image feature extraction antl te
which outperforms an existing discretization approach. Empirical  document clustering. Although the success of PNMF has been

study on three real-world databases shows that PNMF can ompjrically demonstrated, its theoretical convergencayais
achieve the best or close to the best in clustering. The proposedhas been lacking so far

algorithm runs more efficiently than the compared nonnegative . . . ) .
matrix factorization methods, especially for high-dimensional A Key in the learning algorithms for variants of NMF is a

data. Moreover, contrary to the basic NMF, the trained projecton ~ multiplicative update rule that is able to maintain posyiv
matrix can be readily used for newly coming samples and For PNMF, it was shown in [16], [11] that a nonnegative

demonstrates good generalization. multiplicative version of a PCA learning rule (“Oja rule”)
suggested earlier in [18] can be used for computing the PNMF.
l. INTRODUCTION Recently, a similar idea as PNMF, based on the Frobenius

norm, was discussed in [19] as a particular case of their

ac[c\il\?emlzgig\r/sh n;iitlzx Jvf?frfongﬂlr? m’\rlgm:résga?egggg m?)o?r? lConvex Nonnegative Matrix Factorization. The authorsezhll
' brog y i' the Cluster-NMF due to its closeness to the K-means

theory and in practice. The method has been successfulty u%Fustering, which was also noted in [17].

as a tool in many applications such as signal processing, datAfter a brief review of PNMF in Section Il, we extend and

mining, pattern recognition and gene expression studigs [1 - . .
. complete the above preliminary efforts with the followingwn
[2], [3], [4], [5], [6]- For an overview, see [7]. 8ontlr3ibutions: P y

Much of this attention stems from the work by Lee an 1 F | vsis of th iinal PNME
Seung [8]. Their NMF method was shown to be able to ) ormai convergence analysis ot the orgina
algorithms is given in Sections 1I-B and II-C. We

generate sparse representations of data. Later a multituide o - .
variants have been proposed to improve NMF. A notable decou_ple the auto-association (.)f the factorizing matrix
stream of efforts attaches various regularization termthéo by using the Lagrang|an .techmque. an_d prove th".ﬂ the
original NMF obijective to enforce higher sparseness [3], [4 resultant regularized learning objective is monotonycall

- I i decreasing at each iteration. We provide the proof for
5], [9]. These methods introduce an additional parameter ) )
[51, [9] P the PNMF based on the Frobenius norm (Section 11-B)

that balances the sparseness and reconstruction. Howlewer, I for the di based alaorithm (Secii
selection of the parameter value usually relies on exhasti ﬁsc\;ve as for the divergence-based algorithm (Section

methods, which hinders their application. Recently it has . . .
been shown that the orthogonality constraint on the fazzolri 2) Orthonorma} .PNMF (OPNMF).'S mtroduc_ed_ n Section
[I-D. An additional orthonormality constraint is imposed

matrices can significantly enhance the sparseness [1(]], [11 . . . X .
g y P (1. [ on the weight matrix and the Lagrangian technique is
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towards the Stiefel manifold of orthogonal matricesR’'*". Compared with the Non-negative Matrix Factorization
The learning rule turns out to be a simplified versiofNMF) [8] where X ~ WH, PNMF replaces the second
of the PNMF learning rule and reveals the underlyinfactorizing matrixH with W' X. This brings PNMF close to
reason that leads to high sparseness by using PNMFniin-negative Principal Component Analysis. A trivial sado
is related to the nonnegative multiplicative version of & = I appears whem = m, which will produce zero error
PCA learning rule (“Oja rule”) [11]. but is practically useless. Useful PNMF results usuallyespp

3) Nonlinear extension of PNMF in Section II-E. We noticevhenr < m for real-world applications.
that the multiplicative update rule for PNMF based The term “projective” refers to the fact thAW W7 would
on the Frobenius norm relies only on inner producisdeed be a projection matrix W were an orthogonal matrix:
between data vectors. This enables us to apply PNMF W = 1. It turns out that in PNMF learningW becomes
for any nonnegative kernel Principal Component Anabpproximately, although not exactly, orthogonal. As wi# b
ysis, which in turn suggests many new applications aken, this has positive consequences in sparseness of-the ap
nonlinear PNMF such as graph partitioning. proximation, orthogonality of the factorizing matrix, deased

4) Comparison of PNMF with two recent NMF variants ircomputational complexity in learning, close equivalenoe t
Sections Ill and IV. In addition to the classical NMF and:lustering, generalization of the approximation to newadat
K-means algorithms, we also compare PNMF with twavithout heavy re-computations, and easy extension to a non-
more recent algorithms, th@©rthogonal Nonnegative linear kernel method with wide applications for optimipati
Matrix Factorization[10] and Convex Nonnegative Ma- problems.
trix Factorization[19]. Some theoretical considerations
are given in Section Ill, and in Section IV, empirical
results on three real-world datasets show that PNMF

TABLE |
SOME FREQUENTLY USED NOTATIONS

can achieve the best or close to the best in clustering-m,n,r  data dimensionality, sample size, reduced rank of marix

Furthermore, PNMF is more advantageous in terms of R7*"  space of non-negative: x r matrices

high sparseness and fast training for high-dimensional * data matrix of sizen x n _

X approximated data matrix of size x n

data. 7z Zir = X3/ Xis
5) A new application of PNMF for recovering the pro- | w factorizing matrix of sizem x r

jection matrix in a nonnegative mixture model. Our| H factorizing matrix of sizer x n

experimental results show that PNMF can achieve smajl U,V factorizing matrices of size x r

. e U binary matrix of sizen x r

recovery errors for varous source d|3t”bUt|onS-_ _ K kernel matrix or a similarity matrix between samples, size
6) Comparison of PNMF with the approach of discretiz- nxn N _ _

ing eigenvectors in Section IV-C. PNMF is the only| 4 Lagrangian multiplier matrix of size x r

. . . v Lagrangian multiplier matrix of size x n

nonnegative matrix factorization method that can handle ; , ,, 1L....m

the nonnegative principal component analysis among the j, s, ¢ 1,...,n

selected algorithms. In terms of small reconstruction_*.! L...,r

error, PNMF also defeats a two-step approach that
first applies eigendecomposition and then discretizes thel here exist two popularly used approaches that quantify the
eigenvectors [20]. approximation error (1). One is based on the Frobenius norm
7) Theoretical justification of moving a term in the generi®f the matrix difference and the other employs a modified
multiplicative update rule. Some auxiliary mathematicafullback-Leibler divergence. In this formulation, PNMF sva
results are given in the Appendix. Especially, in mathdirst introduced in [15]. In this section, these two errotemia
matical convergence analysis of a multiplicative upda@e recapitulated and new convergence justifications aemngi
rule, one often needs to move a term from the numerator
to the denominator or vice versa in order to maintaip. |terative Lagrangian solution
the ”Or!”egf"‘“"'_tY- We present a common tephnlque_wnh Before presenting the PNMF algorithms, it should be em-
theoretical justification of such moving by mtroducmgphasized that nonnedative learning is essentially a cainst
an additional tight upper bounding term in the auxiliar)é L 9 gt y . .
function ptlmlzanon problem. .More constraints can be conS|d.ened i
' addition to nonnegativity, for example, the orthonornyaéind
the replacemenH = W7X. Here we employ a common
Il. PROJECTIVENONNEGATIVE MATRIX FACTORIZATION  procedure to derive the iterative solutions using the Liagjan
Given a nonnegative input matriX € R7T*", whose technique, which is the best known method to handle the

columns are typicallyn-dimensional data vectors, one trie§onstraints.

to find a nonnegative projection matri ¢ R7™*™ of rank  Given the unconstrained objectivé(W) to be minimized
such that (see Table 1 for notations) together with a set of equality constrair{ts, (W) = 0}, the
. generalized objective can be formulated by introducing the
X~X=PX (1) Lagrangian multipliers\, }:

In particular, Projective Nonnegative Matrix Factorization j(W7 ) = T(W) +Z My Fy (W).
(PNMF) calculates the factorizatioR = WW7 with W ¢ »
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For nonnegative optimization, we construct the auxiliamd- Based on preliminary results given in the Appendix, we are
tion G(W, W) for J (W, {\,}) as described in Appendix now ready to relate this update rule to an iterative Lagramgi
B by using one or more bounds in Appendices C and D. Agolution. First we rewrite the problem (4) as

update rule that includes the Lagrangian multipliers

e _ o 2
W' = 7 (W, {\,)) @ minimize Jr(W,H) = || X - WH]|%. (6)
subject to H = WTX. (7)

can then be obtained by settingG(W,W')/0W’ = 0.

Finally, the quantities{\,} are solved by using the Karush-

Kuhn-Tucker (K.K.T.) conditions and substituted into (2).
The resulting update rule

Then we have

Theorem 1:The update rule (5) is an iterative Lagrangian
solution of (6)-(7).
W' =7 (W) 3) Proof: The generalized objective is

is called aniterative Lagrangian solutiorfor the constrained
optimization problem. The definition of auxiliary function
guarantees tha’ (W, {),}) is monotonically decreasing if
one repeatedly applies (3). The iterations will converge to

Jr(W,H) = | X - WH|2 + Tr (\I:T (H- WTx)) )

by introducing Lagrangian multiplier§¥ ;. }. Next, we con-

local minimum if there is a lower bound of (W, {),}). Fur- struct
thermore, the multlph_catlve natur_e of thg update rl_JIe. BB Gr(W,W')=Tr (_2XTW/H - ‘I,TW/TX> (9)
the parameters remain nonnegative during the optimization
Notice that the iterative Lagrangian solution does not nec- N Z (WHH"), W2 (10)
essarily remain in the manifold specified B¥,(W) = 0}. — Wi
Instead, it can jointly minimize7(W) and force W to ! Lo )
approach the constraint manifold. Actual¥v never exists ~Tr(ATW) +2Aik Wi+ Wi
in the manifold for some constraints. For example, the or- m 2Wik
thonormality requires many entries of a nonnegative matrix (11)
become exactly zero. IW is initialized in such a manifold T T
o T(XTX +¢'H 12
the convergence would be very poor because the multipleati +r( + ) (12)
update rule cannot recover a zero entry to be positive. 45 an auxiliary function (see Appendix B) of
B. PNMF based on the Frobenius norm (Euclidean PNMF) Lr(W') =Tp(W' H) (13)
The Frobenius norm measures the Euclidean distance be- —Tr (—2XTW’H _ \IITW’TX)
tween two (vectorized) matrices:
+Tr(W"W'HH") (14)
IA-Blr=|> (A - B’ +0 (15)
Y +Tr(X"X + oTH) (16)
Equipped with such a metric, PNMF looks for a solution of
the optimization problem Here we denote\ = 2XXTWWTW for notational brevity.

1 T o G tightly upper bound< » as we apply thejuadratic upper
minimize Ir(W) = §||X - WW X% (4)  bound(10) to (14) and thenoving-term upper bound (type I1)
- 1) to (15) according to Appendices C and E.

. . o 1
A nonnegative update rule for this optimization can bg SettingdG (W, W’) /oW, = 0, we get

developed as follows [15]. First, the unconstrained déviea

of Jr with respect toW is <2XHT Lxwl 4 2XXTwaw)

0Tr(W ho=W; k(17
76;(/% ) o (xXTW), + (WWTXXTW)., i = W waAT L oxxrwwrwy,, - &)
+ (XXTWWTW)HC. The Lagrangian multipliers can be determined by using the
Inserting K.K.T. conditions. According to
R Wi atﬁF (Wv H) T T
Tk = (WWIXXTW),, + (XXTWWIW) —om - W X+2W WH+W¥ =0,
into the additive update rule one obtains
oTr(W
x = Wik — mk%k), ¥ =2WTX - 2WTWH,
‘ T T TxvT
one obtains the multiplicative update rule X¥' =2XX"W - 2XH W' W. (18)
W =W 2 (XXTW) Substituting (7) and (18) into (17), the update rule becomes
ik — VWik

(WWIXXTW),, + (XXTWWTW),,* ) identical to (5). 0
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C. PNMF based on the Kullback-Leibler divergence (Diver- We then construct
gence PNMF)

Gp(W,W') = (24)
The difference of two matrices can also be asymmetricallE(W’HT),;j (25)
measured by the modified Kullback-Leibler divergence: ij
Wi Hyj y Wi Hp
- X)) =2 (log W Hyj — log ——td
D(A||B) = Z <Aij log Aij _ Aij + Bij) _ %: ! zk: Wi Hj (og ik 08 > WaHy;
r Bij (26)
~Tr (\IITW’TX) @27)
PNMF based on such a dissimilarity measure solves the W
optimization problem + Z AW/, — Z AipWip — Z (AikWik log Wzk>
ik ik ik
minimize Jp(W) = D(X|[WWTX). (19) (28)
w=0 + TR H) + ) (X log Xij — Xyj) (29)
The gradient . N .
as an auxiliary function of
0Ip(W Lp(W') =Jp (W' H 30
i . => (W'H); (31)
=D X ) WarXe; [(WW'X), !
5 ” =) Xijlog (WH),; (32)
ij
+ <(WTX)kj +> Wakxw‘) - Tr (¥TWTX) (33)
J a
+0 (34)
also implies a multiplicative update rule: +Tr(¢TH) + Z (Xi;log Xij — Xi5)  (35)
ij
W/, = Wi (ZXTW)ik + (XZTW)ir (20) Here we denoteA = XZ”W for notational brevity.Gp

Zj (WTx)kj + (Zj Xij) (3, War) tightly upper bound< , as we apply theensen upper bound
’ to (26) to (32) and thenoving-term upper bound (type 28)

) , , to (34) according to Appendices C and E.

by puttlrjg the unsigned negatl\{e terms to the numeratorSettingaGD(W,W/)/BW[k — 0, we get

and positive terms to the denominator [15], [16], where we

introduce a new matri¥ with W (ZXTW)Z,k + Air (36)

" ' > Hig — (X®T )ik + Agg

Xij
Zij = m Again, the Lagrangian multipliers can be obtained by using
R the K.K.T conditions. According to
for notational simplicity. 9Jp(W, H) =—(WTZ),;, + Z Wik + U =0
- 7 [ Ik — Y
The problem (19) can be rewritten as OHp, p
one obtains
Weosy POUIWH) = = (WZ) — 3 W
subject to H = W'X. (22)

We then have (X‘I’T>lk = (XZ"W),, - (Z Xij) (Z Wik) - (37)
J (2

Theorem 2:The update rule (20) is an iterative Lagrangian o )
solution of (21)-(22). Substituting (22) and (37) into (36), the update rule bemme

Proof: The generalized objective is identical to (20). -

D. Orthonormality

7 _ T _ wT
Ip(W, H) = DX|[WH) +Tr (lI’ (H-wW X))’ (23) Orthonormality is usually desired for a projection. First,
an orthonormal matrix forms a basis of a subspace, which

by using Lagrangian multiplier$¥ ;. }. facilitates geometric interpretation and signal recarcion.
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Second, two nonnegative vectors are orthogonal if and dnlyhighly orthogonal factorizing matri¥V [15], [16]. This can
their non-zero dimensions do not overlap. For some probleims explained again by investigating the valukg in (90)
such as clustering, this property is especially useful for awhich indicates how effective the orthonormality consttai
proximating discrete solutions. PNMF with the orthonorityal is. Notice the matriXz actually is the ratio of the data entries
constraint is calledrthonormal Projective Nonnegative Ma-over their approximates. Thus &ll;; should be close to one
trix Factorization(OPNMF) to be distinguished from the onesf the approximation is good. In this case one can find that
described in Sections 1I-B and II-C. approaches the zero matrix in (90). That is, a good approx-

Surprisingly, the enforced orthonormality constrainde#o imation leads to an inactive orthonormality constraintisTh
an even simpler Lagrangian solution for PNMF based on tffieding indicates that the explicit orthonormality consitas

Frobenius norm. Consider the optimization problem: not necessary, if there exists a good initialization thavjates
L n B 5 a fairly good approximation, such as the K-means cluster
minimize Jp(W,H) = [|X - WH][} (38) indicators added by a small constant that are used in [10],
subject to H = WTX (39) [19]_. In thi_s case, the update_ rule (20) is more advantageous
T as it requires less computation. On the other hand, random
W W =1 (40)

initialization that results in a poor approximation prolyab

Applying the procedure described in Section II-A, we obtaifeads to effective orthonormality constraints. The updates
Theorem 3:The update ru|e (45) al’ld (20) may then behaVe Very dif‘fel’ently.

(XXTW),,
(WWTXXTW), ’

is an iterative Lagrangian solution of (38)-(40).

The proof can be found in Appendix F. It is interestin
that the update rule (41) drops the teX?WWTW
compared with (5), which makes the multiplicative updat
even faster. This simplification has also been justified
adaptive PCA learning [16], [11], as the gradient teXm=

_ T T T ; ; ;
XXTW + XX"WWIW has little effect in learning the the data vectors and they are implicitly mapped into another

principal directions [21]. vector spaceS by a function¢. The PNMF objective based

Some empl_rlcal res:ults have shown that_t_he update rlﬁﬁ Frobenius norm with orthonormality constraint $hcan
(5) can also yield a highly orthogonal factorizing matiN¥ now be formulated as

[15], [16], [11]. This can be interpreted by our derivation

/
ik = Wik

(41) E. Nonnegative Kernel PCA

The optimization problem (38)-(40) is equivalent to the
classical Principal Component Analysisvith the additional
glonnegativity constraint. Furthermore, the multiplicatiup-
date rule (41) requires onXX” instead of the original data
SRatrix. Thus one can easily extend the iterative Lagrangian
biution to nonlinear cases by using the kernel technique.

Denote ® = [¢(x1) P(x2) ... Pp(xn)]", Wherex; are

procedure in Appendix F, where the Lagrangian multipliers minimize Jx(U) = ||® - UUT®|% (46)
Ay; equal zero in the derivation. That is, the orthonormality U?O r
constraint is ineffective during iterative updates. Thising subjectto U U = L. (47)

also rgvealsthe}t the orthonormallt_y force has alreadylmtyi Define the kernel matrix K = ®&7 with K., =
been included in the PNMF learning, which thus explains th T S

. I(xs) ¢(x:). Suppose allK,; > 0. The optimization prob-
performance resemblance of PNMF and OPNMF in terms A (46)-(47) leads to the multiplicative update rule
orthogonality [11]. Note, however, that computationalhet P P

rule (41) is simpler than (5). , (KU),;,
For the divergence-based PNMF with orthonormality con- ik = Uik (UUTKU)M' (48)
straint '

o In addition to the nonlinearity extension, the update rule
minimize D(X[[WH) (42) (48) is particularly suitable for applications where thetit
o — is given in the form of pairwise relationship and the origina
subject to H ; WX, (43) data vectors are not available. For example, one may perform
W'W =1, (44) nonnegativeNormalized Cut[22] to find multiple partitions
we can similarly derive an multiplicative update rule :ﬁ%?t;r::;rt?&ted graph which is represented by a nonnegative
. .
. W Bii + (WWTC)ik7
Cir, + (WWTB),;, F. Projective Semi-Nonnegative Matrix Factorization
whereB = ZX'W + XZ'W andCy = 37, (W'X), .+  In the above we assume that the data matrix or the

(45)

> Xij 2, Wai for notational brevity. kernel matrix contains no negative elements. Otherwise the
Theorem 4:The update rule (45) is an iterative Lagrangiamultiplicative update rules using the principle describiad
solution of (42)-(44). Section A cannot guarantee that the updated parametergrema

The proof can be found in Appendix G. Similar to thenonnegative. The nonnegativity restriction can be removed
Euclidean case, previous empirical studies have shown thgtdecomposing a matrix into its positive and negative parts
the Divergence PNMF update rule (20) can already yield amd employing thdinear lower boundand/orquadratic lower
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boundin Section D and slightly modifying the multiplicative with the optimal
update rule.
Let us take the Semi-Nonnegative Kernel PCA (Semi- . Zij Xij

NKPCA) for example. The modifications of other algorithms ¢ = Zij (WWTx)ij‘

can be obtained similarly. Consider now the matkx has

both positive and negative entries. One can always separatglext, fixing p or o, the optimalW given its current estimate

the positive and negative parts Kf by calculating can be found by putting* or ¢* in the denominator of (5),

+ (41), (20) or (45). Or equivalently, one can apply the ordgin

Ko = (Kol + Kor) /2 multiplicative update rule and then calculate
Ko = (|Kst| = Kat) /2.

In this way K = K+ — K~ and the entries of botiKt and new _ rp-/ Tr (WTXXTW') (54)
K~ are all nonnegative. ik F\ Tr (WWITXXTWWT)
We next rewrite the PNMF optimization problem as
or
o + _ _ T &2
minimize Je(U,V)=|®-UV*®|%, (49) . , > Xo
i — ik — YWik TX (55)
subject to V = U, (50) Zij (WW )ij
vlu =1, (51) _
S . . _ as the new estimate.
(K*U + UuTKfU) } one and the modified objective is equivalent to the origima.o
i = Uk gk Thusp or ¢ serves as an intermediate variable that stabilizes

(KU + UUTK+U)jk and speeds up the algorithm especially in early iterations.

by using the derivation procedure in Section II-A (see Ap- The stabilization (54) requires extta(m?*r) computations

pendix H). at each iteration iIXX”' is precomputed. It can be empirically
shown that the simple normalization

G. Stabilization W/

new __

The Lagrangian solution of PNMF iteratively performs one W72
of the multiplicative update rules presented in SectioB-lI-
II-E. However, we find the convergence path is often velgan achieve similar stabilization effect [15], [16], where
zigzag in practice and some numerical computation probleh$V'[|> equals the square root of maximal eigenvalue of
may occur after several iterations if the factorizing maW W’ W’. The normalization approach requires oxlym:?)
does not have a proper magnitude. extra computation. Yet, whether the above normalization
Theoretically, let us look at the update rule (41) for exaaplwould affect the monotonicity of the Lagrangian iterations
If the (Frobenius or Euclidean) matrix norm of the curr&4t remains theoretically unknown. For the divergence case, th
is very large, then the norm will become very small in the negtabilization (55) require)(mr) computing cost ify, ; X;;
iteration because the norm is cubically powered in the denogndz; = Zj Xi; are precomputed.
inator. On the other hand, if the current norm is very small,
it will become very large in the next iteration. Consequgntl
the norm of W will change drastically between odd and everi. On the optimization of original objective functions
iterations. A similar problem happens for other method such _ o o ) _
as theOrthogonal Nonnegative Matrix Factorizatig®@NMF) The underlying principle for deriving an iterative La-
[10]. grangian solution is relaxed constraint optimization. éier
We propose to overcome this problem by introducing or{glaxatlon means the allowance of. :_small V|0I§1t|on of the
more parametep. For PNMF based on the Frobenius norm|,nvolved constraints and leads to a finite regularized liegrn

the modified objective becomes objective by using Lagrangian multipliers. This in turn ggv
. sound interpretation of two forces, one for optimizing the
minimize Jr(W,p) =X — pWWTX|%. (52) original objective and the other for steering the estimate t

approach the constraint manifold. In this sense, it is aaiti
Fixing W, the global optimalp* can be solved by settingto optimize the regularized objective instead of the omgin
0Jr(W,p)/0p = 0: objective.
. Tr (WTxxTw) For rgadgr; who still have concern on.the. monotonic.de—
r=g (WWIXXTWWT)' crease in 0'r|g|nal PNMF (not QPNMF) objective, we prgwde
an alternative theoretical justification by means of approx
Similarly, we can modify the divergence-based PNMF as mated upper-bound minimization. Take the PNMF based on
L . T the Frobenius norm (4) for example. We linearize the objecti
MReS07e Ip(W,0) = DX[[eWW'X),  (53) fynction 7(W') = X - W'W'TX|2 by its its first-order
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Taylor expansion aWw': projection matrix which can be used to transform the unseen
. , data while NMF and ONMF cannot.
Ir(W') ~ It is well-known that K-means clustering is tightly related
lTr (XTX) (56) to nonnegative matri>§ facto.rizations [12]. Assume' we want
to cluster a set ofn-dimensional vectorsy,...,x, into r
—Tr (WTXX"W) (57) clustersCy,...,C,. The classical K-means clustering uses

cluster centroidsng, ..., m, to characterize the clusters. The

1 1T T T T T
+§Tr (W (WWIXXIW + XXTWW W)) (58) objective function is

Next, we apply thdinear lower boundto the second line (57)

and construct its auxiliary function Jimeans= »_ ¥ [Ix; — my >,

R k=1j€Cy

Gr(W', W) = . : .

1 As shown in[12], [13], this can be written as

3T (XTX) . o

- Z XTW (1 + log Wm) with X = [x; x5 ... x,,] the data matrix, an® the indicator
T matrix for the clusterst/;;, = 1 if vector x; belongs to cluster

+Tr (W’ (WWTXX"W + XXTWWTW)) : Cy , zero otherwise. ThulJ is a binary ¢ x r) matrix, whose

. columns are orthogonal if each sample belongs to one and
Setting 0Gr (W', W)/0W’ = 0, we also obtain the PNMF only one cluster. Minimizing7k.means under the binary and
multiplicative update rule (5). Therefore, the approxietat orthogonality constraints ofJ is equivalent to maximizing
PNMF objective function is non-increasing under the PNMfFr (UTXTXU) under these constraints.
multiplicative updates. Becausg(W’) is a quartic function,  The PNMF has a direct relation to this. Consider the PNMF
the above linearization (56)-(58) is good onlyW is kept criterion for the transposed data mat&’:
small, which also necessitates the stabilization desdribe
Section II-G. X" - UUTX"|? =

Tr(X'X) — 2Tr (UTX"XU) + Tr (UUTX"XUUT)
Il. CONNECTIONS TO RELATED WORK Together with the orthonormality constrafdt’ U = I, the last
Table Il summarizes four variants of nonnegative matriterm becomes TFU”X”XU) and the whole PNMF criterion
factorization based on the Frobenius norm. Compared witecomes exactly equal to the K-means criteriiimeans in
the Nonnegative Matrix FactorizatiofNMF) approximation (59), except for the binary constraint.
[8], [23], PNMF replacesH with WX in the objective. =~ PNMF solves thePrincipal Component Analysi$PCA)
It has been shown that such a replacement leads to mygbblem with the nonnegativity constraint. It correspomnas
higher sparseness which is desired for extracting pageashe nonnegative version of rule (68) in Appendix A that
representations [15], [16], [11]. NMF is known to be sensiti implements the PCA algorithm [18]. Given the inpkt and
to the starting values &V andH and heuristic initialization is the outputY = W7”X one can form the non-normalized
therefore required [24]. By contrast, the sparseness eeayal Hebbian update directioXY” = XXTW, to which the
be achieved by using PNMF even with different random seerde (68) attaches the regularized terfWWTXXTW that
[16], [17]. comes from the normalization. Using this technique, Yard) an
The projective replacement has also been proposed in theaksonen obtained tHdéonnegative Linear Hebbian Network
Convex Nonnegative Matrix Factorizatig€NMF) [19]. By (NLHN) algorithm that iteratively applies the update rue )
using a different matrix for reconstruction, CNMF is able t§11]. However, the derivation in [11] is mainly inspired by
achieve better approximation accuracy for training dataay the biological neural networks and lack of mathematicagrint
however poorly generalize to the testing data because #nerepretations. Here we have given formal convergence analysis
twice as many parameters to be learned. in Section 1I-D. Our derivation also demonstrates that tile r
The orthonormality constraint proposed in Section 1I-[)68) may be extended to learn nonnegative projections iryman
is another approach to increase sparseness and reduceother problems.
number of local minima. This idea has also been adoptedRecently it was reported that the graph partitioning proble
by theOrthogonal Nonnegative Matrix Factorizatid@NMF) can be solved by using eigenvectors of a real symmetric
[10], where the objective of NMF is accompanied with thenatrix. Two notable methods, for example, adermalized
orthonormality constraint oW or H. Cuts[22] and theModularity method [25]. These approaches
Compared with NMF and ONMF, the CNMF or PNMFcan however identify only two partitions at a time. For
optimization requires only the correlation or kernel matrisimultaneous multi-partition finding, it remains difficuio
instead of the original data vectors, which is advantagéous convert the eigenvectors to binary cluster indicators. Wd a
nonlinear extensions. This property also enables fagtitigi Shi have proposed a discretization algorithm called POD tha
when the dimensionality is much higher than the number 6hds a binary orthonormal matrix closest to the one composed
samples. For feature extraction, CNMF or PNMF can outputcd eigenvectors after some rotations [20]. Nevertheless, t
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TABLE I
SUMMARY OF SOME VARIANTS OF NONNEGATIVE MATRIX FACTORIZATION BASED ON THE FROBENIUS NORM
method problem formulation sparseness data vectors| generalized to new data number of
W>0H>0W2>0 required without iterations parameters
NMF min [|X — WH||g low yes no (m + n)r
ONMF min [X — WH]g high yes no (m +n)r
W'W =TorHH” =1
CNMF min |[X - WWTX| g high no yes 2mr
PNMF min [|[X - WWTX]| g high no yes mr
(OPNMF) WTW =1

resulting matrix is not necessarily optimal in terms of ththe cluster distributions and quantify clustering perfanoe
partitioning objective. by using ground truth class information which is independen

What we propose here is to relax the binary constrainf compared algorithms.
to nonnegativity and integrate the latter into the kerneAPC Suppose there is ground truth data that labels the samples
problem which is solved by multiplicative update rules. Thby one ofq classes. Purity is given by
empirical results shown in Section IV-C indicate that our .
method can outperform the POD approach. purity = 1 max nk, (60)

n

V. EXPERIMENTS where nl is the number of samples in the clusterthat

We have performed empirical studies of the PNMF algdelong to original clasd. A larger purity value indicates
rithms for typical problems: feature extraction/compr@ss better clustering performance. Entropy measures how edass
clustering, generalization for new data, and kernel chirsje are distributed on various clusters. Following [10], [2fHe

Throughout, we used three real-world datasets: entropy of the entire clustering solution is computed as:
« Iris Plants Database(iris), a dataset that contains 150 ] roq .

instances of 4 positive-valued attributes. The samples entropy= — ZZ”Q log, E7 (61)
belong to three iris classes, Setosa, Versicolour, and nlogquzl e ng

Virginica, each including 50 instances. This small-scale

_ l
dataset is selected mainly for comparison with the foyvhere n;, = 21 M- Generally, a S”?a"er entropy value
lowing larger-scale databases. corresponds to a better clustering quality.

. Optical Recognition of Handwritten Digitgdigit), a We setr = ¢ and repeated each algorithm on each dataset
subset containing “0”, “2", “4” and “6” selected from 100 times with different random seeds for initializatiorhel
the UCI optical hand'vvrittén digit database. There argean and standard deviation of the purities and entropies of

2237 samples of 62 nonnegative integer attributes. THfach algorithm-dataset pair are shown in Table Il (a) and

dataset is used to demonstrate the algorithm behav{BP’ respectively. From these statist?cs, We can see thMiPN
when samples are much more than attributes. performs the best for all datasets in terms of purity. For the

. ORL Database of Face®rl), a set of face images taken®': K-means ranks top in terms of entropy, but we notice that
at the AT&T laboratory at different times, varying thePNMF as the runner-up performs very closely to the winner.
; We have also compared the sparseness of factorizing matri-

lighting, facial expressions (open / closed eyes, smiling i k
not smiling) and facial details (glasses / no glasses).aThé€S computed by the methods based on nonnegative matrix

are 400 gray-scale images from 40 distinct subjects affftorization. Given anu x v nonnegative matrixA, its
of size92 x 112. We have used this dataset to study thaParseness is qguantified by the fraction of number of entries

case where the dimensionality is much higher than that are smaller than the mean,, A,,/uv against the total
number of samples. number of entriesv. A fraction close to one corresponds to

an asymmetric distribution of entry values, where mostiestr

For comparisons, four other algorithms have been chos@hé near zero and thus lead to high sparseness. The means and
The Lloyd's algorithm for K-means [26], NMF [8], [23], Standard deviations of resulting sparseness are showrble Ta
ONMF [10], and CNMF [19]. For better comparison, wdll (¢)- PNMF achieves the highest sparseness foririseand
only use Frobenius norm-based algorithms as there is @igit datasets and is the runner-up, which is very close to best,

divergence-based implementation of ONMF and CNMF. for the orl dataset. By contrast, NMF yields much less sparse
factorizing matrices. ONMF has the same sparseness as PNMF

) for iris anddigit but lower fororl. The sparseness of CNMF
A. Clustering depends on data. Fais where dimensionality is far less than
Clustering is an important application of NMF and its varieardinality, W is sparser thaiW. On the other handW is
ants. We have adopted two measuremepsity and entropy  sparser tharW for orl where dimensionality is much larger
which are widely used in nonnegative learning literatuce, fthan cardinality.
comparing clustering results. These measurements préaide We have recorded the consumed time of the compared
comparison because they they do not rely on assumptionsafforithms for the clustering task with the selected dasase
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TABLE Il
CLUSTERING PERFORMANCE (A) PURITIES, (B) ENTROPIES AND (C) SPARSENESSEACH ENTRY SHOWS THE MEANEDEVIATION OF THE CLUSTERING
RESULTS WITH 100 DIFFERENT RANDOM INITIALIZATIONS. BOLDFACE NUMBERS REPRESENT THE BEST MEAN IN THE CORRESPONDBNROW.

@
dataset| K-means NMF ONMF CNMF PNMF
iris 0.83+0.10 | 0.78+0.05 | 0.85+0.03 | 0.81+0.04 | 0.9/+0.01

digit 0.92+0.10 | 0.98+0.00 | 0.98+0.00 | 0.96+0.00 | 0.98+0.00
orl 0.72+0.03 | 0.47+0.03 | 0.72+0.02 | 0.68+0.02 | 0.72+0.03

(b)

dataset| K-means NMF ONMF CNMF PNMF
iris 0.31£0.10 | 0.42£0.08 | 0.30+0.05 | 0.36+0.03 | 0.09+0.03
digit 0.13+0.10 | 0.08+0.00 | 0.08+0.00 | 0.12+0.00 | 0.08+0.00
orl 0.15+0.01 | 0.34+0.02 | 0.1740.01 | 0.19+0.01 | 0.16+0.02

()
NMF ONMF CNMF PNMF
dataset W H W H W W W
iris 0.74+0.05 | 0.814+0.11 | 0.96+0.01 | 0.82+0.06 | 0.81+0.02 | 0.93+0.01 | 0.96+0.01

digit 0.93£0.00 | 0.79£0.00 | 0.97+0.00 | 0.77+£0.00 | 0.93+0.00 | 0.94+0.00 | 0.97+0.00
orl 0.65+0.00 | 0.67+0.00 | 0.96+0.00 | 0.5140.00 | 0.98+0.00 | 0.914+0.00 | 0.97+0.00

The comparison also includes a recently proposed NMF immatrix G by settingG = G + € with a small nonnegative
plementation based on projected gradient caldFPG[28], noise matrixe.
which is available in its author’'s webstteThe experiment was  Note now that ifG contains no noise, then the solution to
repeatedly performed 100 times on a computer with an Intel T2 . - - Tt
Core Duo CPU, 2G DDR2 main memory and Linux Ubuntgait [X-WW X[ = min |[GGTY -WW GG Y|[;
7.10 operating system. The resulting means in seconds are -
shown in Table IV. subject toW”W = I is given byW = GR with RR” =
The NMF algorithms, especially the projected gradiedt Because bottW and G are nonnegativeR must be a
implementation, run quickly for the datasétis anddigit of permutation matrix. As shown in Section II-D and [11], the
low dimensionality. However, they become much slower farrthonormality constrainW”W = I approximately holds.
high-dimensional data iorl. The NMFPG algorithm is even Thus we would expecW in the PNMF (or OPNMF) solution
more problematic in this case. In addition, The PNMF tragninto closely resemble a column-permuted version of the calgin
is faster than the other nonnegative matrix factorizati@thm matrix G.
ods for theorl dataset. The speed advantage mainly comesWe generated two sets &fs: one contains both nonnegative
from two factors. Firstly, PNMF as well as CNMF does noand negative entries, and the other contains only nonmegati
rely on the original data vectors but only their correlationnes. Euclidean PNMF (semi-nonnegative version) is used in
matrix which can be calculated before the iterations. Thibe recovery test for the first set while Divergence PNMF
is particularly beneficial when the dimensionality of dasa ifor the second. For the first set &fs, we have tried three
high, for example, in therl database. Secondly, PNMF haglistributions: (1)uniform uniform distribution in[—0.5, 0.5];
a simpler iterative Lagrangian solution as there is only orf@) gauss zero-mean radial Gaussian of unitary variance;
matrix to be learned in PNMF while the other three hawd) laplace zero-mean radial Laplace distribution of unitary
to update two matrices at each iteration. ONMF inherits thariance. For the second set ¥fs, we have also tried the
dimensionality problem of NMF because it uses one of trabove type of distributions but shifted the rangeuniform
NMF update rules. to [0,1] and taken the absolute values of @ussand (3)
laplace
B. Projection recovery The matrixG was gener_ated as follows. First we re_mdomly
drew a nonnegative matrif’ € [0,1]"*" by the uniform
We have tested the proposed PNMF method for recoveriggyipytion. Next, we binarized® by setting the largest entry
a nonnegative projection matrig = GG?’ or equivalently iy each row to one and the others to zero. We repeated the
its factorizing matrixG. Consider a quasi-projection mixture;pve sampling until each column Th contains at least one
model . non-zero entry. Then we normalized each columnIoto
X=PY=GGY, unitary norm. In this way we obtained the truly orthonormal
gative matrixMnatrix G. Finally, the quasi-orthonormal matri& is formed

where X € RT*" is an observed nonne ; ; i !
GGT: and by drawing a noise matrix € [0,0.01]™*" by uniform

Y € R™*™ js some source matrixP = y Hiaw > Hatllg
G = [gi,...,8] € R™*" is a nonnegative quasi-orthonormafistribution and adding it t. _ .
matrix, i.e. g7g;/|li|llg;|l very small if i # j. The noisy The PNMF algorithms take the mixed matX as input
factorizing matrixG is generated from a truly orthonormal@nd output a quasi-orthonormal mati&. We next computed
its true orthonormal versioW = [wy,...,w,] by binariza-
Lhttp://www.csie.ntu.edu.tw/ cjlin/nmf/ tion and column-wise normalization. W well recoversG,
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TABLE IV
MEAN (1) AND STANDARD DEVIATION (o) OF TRAINING TIME (IN SECONDS IN FORMAT p #+ 0. BOLDFACE NUMBERS REPRESENT THE BEST MEAN IN
THE CORRESPONDING ROW

dataset NMF NMFPG ONMF CNMF PNMF
iris 0.85+0.17 | 0.22+0.10 | 1.32£0.01 | 1.14+0.00 | 1.34£0.00
digit (x10%) | 2.15+0.06 | 0.070.10 | 3.94+0.43 | 2.79£0.15 | 2.72+0.14
orl (x103) 3.21+£0.02 | 26.52£5.16 | 6.16£0.01 | 0.24+0.00 | 0.23£0.00

TABLE V
MEAN (41) AND STANDARD DEVIATION (o) OF RECOVERY ERROR oF THE  th€ POD implementation from its author’s webgjtevhich
MIXTURE MATRIX IN FORMAT g =+ o (x1072). takes a matrix of eigenvectors as input and returns digecbti
' - cluster indicators. The POD discretization depends on the
Ytype uniform gauss aplace R ; ; ; At
Elcidean PNVE T o2 13 T 0370 11 T7652.57 |_n|t|al rotation matrix. We rep_eated such discretizatid®0 1
Divergence PNMF| 4.33+3.36 | 0.46£0.04 | 4.21+3.39 times and selected the one with the bgt.

Kernel K-means(KK-means) (see e.g. [31]) is another
approach that finds local optima of (62)-(63). It extendsKhe
their difference should be small after proper ordering @& thmeansmethod [26] to nonlinear cases via the kernel principle
columns. That isW = [Wy,,...,w,; ]. The k-th permuted [32]. Denoteg a vector function that implicitly maps a sample
column indexl, can be determined by x to another spacé& and n; the number of samples in the
kth clusterCy. The squared Euclidean distance between the
Jjth sampleg,; = ¢(x;) and thekth cluster mean is

¢——Z@

I, = (GTW) .
k= arg n}ca}x W
We can then measure the recovery quality by calculating the
relative error|W — G| r/||Gllr = |W — G| r/r, where
a small value indicates better projection recovery. We have

tECk
repeated the experiment for eakhtype and PNMF algorithm
for 100 times with different random seeds. The statistichef ¢ b~ — Z ¢ ¢ + 2 Z Z s b
results are recorded in Table V. ¥ tec b secutecy
It can bg seen that the me.an.relgtive recovery errors are Z Kji + Z Z K.
less than five percent for alt” distribution types using either k fec, k acCy, teCe

algorithm. In particular, we have found that the recovery is

the best wher is drawn from thegaussdistribution, where WhereK,; = ¢. ¢,. The KK-means algorithm thus iteratively
Euclidean and Divergence PNMF algorithms can respectivedyoups the samples to their nearest cluster by the above
achieve 0.37% and 0.46% mean relative error with smalistance measurement. The cluster means need no explicit
standard deviation. Remarkably, Divergence PNMF worlg@mputation as they are not required in cluster indication.
very robustly in this case, resulting in only 0.04% standarthe matrix U is then obtained by setting/;, = 1 if the
deviation. By contrast, Euclidean PNMF is more stable acrogth sample belongs to theth cluster and0 otherwise. The
different initial Y matrices, where mean errors are less thafiK-means result also depends on the initial setting of elust
two percent for all three tested distribution types. indicators. We used 100 different initial guesses by unifor
random sampling and took the one that achieves the largest
objective.

Among the five compared nonnegative matrix factorization
algorithms, only PNMF can handle the nonnegative kernel
principal component analysis. Following [10], [19], we koo
maximize Jx(U) = Tr(UTKU) (62) the best resulting matrix from POD and KK-means and added

u 0.2 to it as the initialized matrix of PNMF. After PNMF
converged, we discretized the PNMF output by setting the
maximum entry of each row to 1 and the others to 0.

We have adopted two types of kernel in our experiments.
Such optimization is required in many clustering or grapBne is the linear kernel

partitioning algorithms such apectral partitioning29], [30],

Normalized Cufi22] and themodularity method [25], where Kggea’: xIxy,

the matrixK is derived from the similarity or affinity matrix.

These algorithms mostly resort to finding eigenvector&of i.e. ¢(x;) = x;, because of its simplicity. The other is the
Nevertheless, as multi-cluster indicators each columriUof radial basis function(RBF) kernel

has to be binary valued. It remains difficult to obtain such 9

indicators from the real-valued eigenvectors. One pdiyibi KRBF — exp [ — %5 — X

is a discretization algorithm called POD that finds a non- ’ 202

negative orthonormal matrix closest to the one composed of

eigenvectors after some rotations [20]. We have employedhttp:/iwww.seas.upenn.edu/jshi/software/

C. Nonnegative Kernel Principal Component Analysis

Given ann x n symmetric matrixK, consider the trace
maximization problem

subject to for allj, » U =1,U € {0,1}"" (63)
k=1
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090 Fig. 2. Relative objectives of POD, KK-means, and PNMF with li@ear
and (b) RBF kernels.

Fig. 1. Entropies of off-diagonal elements of the RBF kernetrimavith
varyingo.
(62) without the constraint (63), we recorded the diffeeenc

S ) ) . ~ between the PCA output and the resulting objectives:
which is widely used in machine learning and data mining.

Here the kernel widthr as a free parameter needs to be 5(0) = T pca(U) = TR (0).
adjusted. We have employed an information-theoretic nteth
to automatically determine the parameter as follows. Notice
the diagonal elements d&K contribute nothing to clustering.
Therefore we can consider only off-diagonal entries. It ban

The relative objectives are shown in Figure 2, where a smalle
0 value indicates better performance. It can be seen that PNMF
outperforms POD and KK-means for all selected datasets

seen thaii., (s # ) approaches 0 i — 0 and approaches 1with both kernel types. Although the eigendecompositioddin
st -

. 4 . . ) a global optimum without the binary constraint, the extra
if o — oco. That is, the uncertainty or Shannon information o iscretization emploved by POD however does not tike
K, is close to zero at both ends. Starting from a su1‘ficientfj ploy y

: : . ifito account. The POD output therefore can be farther fram th
large value and then decreasingteadily, one can find a peak

corresponding to th& with locally maximal information. In optimum compared with PNMF. KK-means inherits both the

this work we have used entropy for information measuremeatdvamage and disadvantage of K-means. In our experiment,
Py runs fast but easily falls into poor local optima. This can

To avoid dominance of some feature over the others, we fl[)sé partially remedied by repeating the algorithm with many

normalize the samples in a dataset by subtracting their me ; X : )
and dividing each feature by their standard deviation. Tﬁ?éﬂerent starting points. Occasionally KK-means can avti

entropy peaks for the selected datasets are shown in Figﬂ%formance next to PNMF.

1, to which the corresponding’s are 2.18, 7.25, and101.57

for iris, digit, andorl, respectively. Without losing clustering V. CONCLUSIONS
accuracy, the matrix columns dU are re-weighed to be We have proposed a new variant of nonnegative matrix
unitary for better comparison: factorization called PNMF using the approximation scheme
. Ui X ~ WWTX for a given data matriX where matrixW is
Ujp = ———. non-negative. The approximation accuracy can be measured
\/Et Uk by the Frobenius matrix norm or the modified Kullback-

Leibler divergence. Either dissimilarity measurementfe#o
multiplicative updates that learns a highly sparse faptati

\/ Tk (U)/||K||» for better visual illustration. As PCA matrix whose columns are more orthogonal than for other
is known to achieve the global optimum of the objectiveariants of NMF. Our PNMF algorithm provides an efficient

We further normalize the objective 72 (U) =
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solution for the nonnegative principal component analysis that axis conforms to the learning direction. There exist
problem, which is in turn applicable to many practical probwo kinds of stationary points in the iterative use of the
lems such as clustering and graph partitioning. All algwnis multiplicative update rule (66): one satisfieg = g;, i.e.
have mathematically been proven to be iterative Lagrangigfw) = 0, which is the same condition for local optima as in
solutions, namely, jointly finds a PNMF approximation anthe additive updates (64), and the other one;is— 0. The lat-
steers the factorizing matrix towards the constraint nodahif ter condition distinguishes the non-negative optimizafiom
Moreover, experiments on three real-world datasets shatv tkonventional ones and often yields sparsenessv jrnwhich
PNMF is both efficient and accurate. is desired in many applications. Furthermore, unlike steep
The PNMF method can be applied to grouping either fegradient or exponential gradient [35], the multiplicatiyedate
tures or samples. In the former application, the proof piace rule (66) does not require any user-specified learning rates
using the Lagrangian technique may also imply a commarhich facilitates its application.
guideline for learning a nonnegative projection by adaptin As an example, assume thxt is anm x n non-negative
the “Oja’s rule” [18]. The resulting subspace methods majata matrix, and consider the adaptive PCA learning rulga(*O
become a new branch of blind source separation. For thee”) [18] for computing the dominant eigenvector XfX 7
grouping of sample vectors, the sparseness of PNMF can be p
employed to find better discriminative clusters of data [33] wEwty (XXTW B WWTXXTW) ’ (67)
For both applications, the tight connection between PNMF anr its generalization to finding am x r-dimensional PCA
PCA is worthy of further investigation for finding the potaht basis matrixW [36]
generative model.

W =W + 7 (XX"W - WW'XX"W) , (68)
APPENDIXA where~y is a small positive learning rate. Assumikgand W
MULTIPLICATIVE UPDATES nonnegative, a multiplicative rule is
Suppose there is an algorithm which seeks an "W (XXTW)x (69)
dimepsional solution vectow that .maximizes an objective T R O WWTXXTW)
function 7 (w). The conventionahdditive updateule for such : - L
a problem is ) 'Il'he above.lforr;)]ulgtmn _prlnc!ple <|)f muhlnpllcr?tlve updates
- elps us easily obtain an iterative algorithm, the converge
W =W+ 7g(w), 64) oo )y v 0

of which is however not guaranteed. In [11], the authors
where w is the new value ofw, v a positive learning interpret the multiplicative updates as a special case wfrab
rate and the functiog(w) outputs anm-dimensional vector gradient learning. Such learning may albeit diverge due to
which represents thiearning direction obtained e.g. from the the unitary learning step. In this paper we conform to the
gradient of the objective function. For notational breyiye auxiliary function approach which is commonly accepted in
only discuss the learning for vectors in this section, bus it convergence analysis.

easy to generalize the results to the matrix case, where ve wi

use capital letter8V in place ofw. APPENDIXB
The multiplicative update technique first generalizes the AUXILIARY FUNCTION
common learning rate to different ones for individual dimen The auxiliary function method has widely been used
sions: for convergence analysis of optimization algorithms such
w = w +diagn)g(w), (65) as the nonnegative multiplicative updates and Expectation

wheren is anm-dimensional positive vector. Choosing dif“fer—'vlaxIrnlzatlon (EM). Given an objection functiof (W) to

ent learning rates for individual dimensions changes tluate be m!nlmlzed,G(W,W’) IS caIIe_d an auxiliary function if it
direction and hence this method differs from the convemtion> 2 tight upper bound off (W), i.e.
steepest-gradient approaches in the full real-valued doma GW, W) > J(W), G(W,W)=J(W)

It has been shown that the following choicerphas particu- , ,
larly interesting properties for the constraint of non-ziggty for any W and W'. Define
(see e.q.[8], [34]). Suppose is non-negatively initialized. W' = arg min G(VV,W). (70)
If there exists a separation of the learning direction into t w
positive termgg(w) = g™ — g~ by some external knowledge, By construction,

then one can always chooge= w;/g; ,i = 1,...,m, such
that the components of (65) become: J(W)=G(W, W) 2 G(W',W) 2 G(W', W) = 7 (W),

ws gt where the left inequality is the result of minimization ate t
W; = w; +1; [g(W)], = w; + — (g7 —g;) =w;Z=. (66) right one comes from the upper bound. Iteratively applyhmy t
9i 9i update rule (70) thus results in a monotonically decreasing

The above multiplicative update maintains the non- sequence of7. Besides the tight upper bound, it is often
negativity of w. In addition, w; increases whew;” > g;, desired that the minimization (70) has a closed-form sofuti
i.e. [g(w)], > 0, and decreases ifig(w)], < 0. Thus the In particular, settingdG/0W’ = 0 should lead to the iterative
multiplicative change ofv; indicates how much the directionupdate rule in analysis.
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APPENDIXC APPENDIXD
UPPER BOUNDING POSITIVE TERMS UPPER BOUNDING NEGATIVE TERMS

The objective function involves a number of terms which UPPer bounding positive terms is sufficient to produce a
can be divided into two groups according to their leadinguitiPlicative update rule. Alternatively, one can alsovéw
signs. Finding the auxiliary function can in turn become a°und the unsigned negative terms to obtain a different mul-
upper bound for each positive term and a lower bound fgPlicative update rule. It was reported that the latterrapph
each unsigned negative term. For the former, we employ thf@S better performance when the input matrix contains nega-
existing approaches in this paper, two for trace-like teams tive entries [37]. The lower bound stems from the inequality
the other_f_or cross-entropy-like terms. _ z>1+logz,

Proposition 5 (quadratic upper boundfor any matrices
A € R, A symmetric, W € R7*", and W’ ¢ R7*", for z >0, where the equality holds if and only if = 1.

it holds Proposition 8 (linear lower bound)For B € R"*", W €
WA 772 RP*", andW' € R,
> WAy Wi 1, (WTW’'A). (71) W/
— Wik Tr(B"W') > Y B Wi (1 + log fk) (76)

ik
Proposition 6 (linear upper bound)For any matricesA € - _ . o
R, W e R, andW’ € R, we have Proposition 9 (quadratic lower bound)for B € R,
W e RT*", andW’ € R"*",
W2+ W3 S o

oW W’ W
%;Azk i,z Tr(ATW). 2 T(WTWB) > 3 BuWivy (1 tlog W,ii) |

ikl 7 i

The proofs can be found in [23], [10] and [19]. MinimizingThe negative derivative of the right-hand side of (76) is
such upper bounds has a closed-form solution because, for

example, the derivative of the left-hand side of (72) is %Bik, 77)
ik
!
Wik Ak (73) Which is also ready to generate multiplicative update rutes
Wi example, combining the (77) and (73) leads to a multipNeati
Combining other gradient terms, for instaned;,,, this leads update rule:
to a multiplicative update rule w! W, B,
ik A — %sz =0 = Wllk = Wik Zk.
ik / Bix, Wi Wik A,
o ’ ' APPENDIXE
Similar property holds for (71). THE moving ternrECHNIQUE

Proposition 7 (Jensen upper boundyor any matrices

It is desired that all terms in multiplicative update rulee a
X e R, W e R, W e R, andH € R P P

nonnegative. However, sometimes negative terms may appear
, in the numerator or denominator when setting the gradient
- ZXW' log (W H)ij < of an auxiliary function to zero. According to the principle
Y of formulating multiplicative update rules in Appendix A,
- ZXijZaijk (log Wy, Hy; —log i) (74)  one should neglect the sign of such terms and move them

ij k from the numerator to denominator or vice versa. This can be
where implemented by adding the same term to both numerator and
Wix Hy denominator and justified as a corollary of the lower bougdin
Qijr = W technique in Appendix C-D.
M Proposition 10 (moving term upper bound, type I):
The proof follows from Jensen’s inequality [23]. Minimiz- Fi(A, W, W) =
ing such an upper bound requires the derivative of the right-~ **" 7 - W
hand side of (74) . %:AikWiIk - %:Aikwik - %:Aikwik log Wiz: > 0.
ik T
W/, (ZX W)ik’ (79 The proof can be obtained by writing

A
where Z;; = X;;/(WH);;. Combining some other gradient F,(A, W, W) = ZA““ <Wi/k — Wi, — Wi log Wi’“) .
terms, for instance-B;;, the resulting multiplicative update ik Wik

rule becomes The sum in parentheses is nonnegative according to

T
(ZX W)ik 1 4+ logz for z > 0. In addition, the functionF’ vanishes

!
ik = Wi : . .
¥ Biy, if W =W'. Thus one can ad&(A, W, W’) to the original
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auxiliary function without violating the tight bound corgint. one obtains

Furthermore, P Wi T — 9oWTX — oW WH.
- mAik»

v i H _ T T — 1 —
Combined with the other terms from e.g. Jensen upper bouai%si:;n?eljug;‘; f)ri):;ndw W =1 wefind ¥ = 0.
linear or quadratic lower bound that lead to a multiplicativ
update rule, the above derivative will addl; to both the YA (W, H)
numerator and denominator. R A Rl

Likewise, according to thdinear upper bound one can oW
alternatively moveA;; by we get
Proposition 11 (moving term upper bound, type II):

72 2
Fy(A, W, W) =" Ay (W{k + L«W; kW““> >0

= —2XHT - X¥ + 2WHH” + 2WA =0,

WA = XH” - WHH”.

Left multiplying W7 in both sides and usingv’W = I,

one obtains
such that OF W S .
2 _ ik A=W'XH' —HH".
o = — A+ I A,
oW, T
which is consistent with the form of linear and quadratic erpp Insertingt = W' X, we findA = 0. Substituting® = 0 and
bounds. A = 0 back to (87), the multiplicative update rule becomes
(41). O
APPENDIXF

PROOF OFTHEOREM 3
The generalized objective is

T (W, H) = Jp(W,H) + Tr (A (WTW —1)),

APPENDIXG
PROOF OFTHEOREM 4

~ L . _ The generalized Lagrangian objective is
whereJr(W, H) is given in (8) and{ A, } are the introduced

Lagrangian multipliers. Similar t6: in (9), we construct jﬁ(W,H) — Fp(W,H) +Tr (A (I B WTW)) ’

GE(W, W) =Tr (—QXTW’H - \IITW’TX) (78)
and is tightly upper bounded by

WHHT) W2
+ Z ( )7,k: ik (79)
i Wi Gp(W, W) =Gp(W, W)
(WA),, W WLWY,
7 7 _ A g g 1 1 M08
+ %; W (80) %z: kiWieWir | 1+ log —=—* W Wi
+Tr(XTX + 8TH - A) (81) . .
where we apply thguadratic lower boundsee Appendix D)
as an auxiliary function of for the additional term and replacé;;, in (24) with
LEW') =T# (W' H 82
—Tr (—2XTW’H - \IITW’TX> (83)
+Tr(WTWHHT) (84)  SettingdGi (W, W')/oW], = 0 yields
T
i Ir (;(&TV:( VQTH A (Z? o= Wi L W)y (WA, + Ay (88)
Here we apply theguadratic upper bound79) to (84) and
(80) to (85) according to Appendix C. Setting The quantities? and A can be solved by using the K.K.T.
OG- (W, W) JoW, =0, conditions:
we get U =(W'2Z), Z Wik (89)
9XHT +X\I/T) ) . .
Lo=W; sk 7 A:—WZXW — (W' XZW
ik Wzk (QWHHT + 2WA)7k (8 ) kl ( )kl ( B )k-l
Next we solveA and ¥ by using the K.K.T. conditions. + Z Wik Z H; + Z (W X)kj Z Wi (90)
K3 J J 3
07 (W, H)

g - WX 2WIWH ¥ =0, Substituting (89) and (90) into (88), we get (45). 0
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APPENDIXH
DERIVATION OF UPDATE RULE OFSEMI-NKPCA
(1]
The generalized Lagrangian function is

JiE(U, V) =J£(U, V) +Tr (A (UTU - 1))
+ Tr (®(V —U))

(2]

=Tr (2V'K " U) (3]
+Tr(VIKTVUTU)
—Tr(2Vv'K"U)
T s reT [4]
- Tr(V'K-VU'U)
+Tr (AUTU)

—Tr (\IITU) [5]
+Tr(K-1+97V)
[6]
The function£% (U’) = J£(U’, V) has the auxiliary func-
tion

Uz +U? "
Gr.v) = (v, P

T Uik [8]
+3 (UVTKHY), Uk ol
ik 7% Ui
U’ [10]
3" (2K*V) , Ujilog (1 + ’k)
ik ’ Uik

U U: 11
_Z(VTKiv)klUijjZIOg <1+ ik ]l) (]

Kl UikUst [12]
+ Z (UA)]k Uﬁc
U; [13]
ik J
U’
_ Z WU}y log (1 + Ujk> [14]
, j
jk
T (K . szTV) [15]

SettingdG (U, U’)/0U!, =0, we get
[16]

(2K+V +2UVTK-V + @),
(2K-V +2UVTK+V + UA)

j/'k = Uj
(17]
The quantitiest and A can be solved by the K.K.T. condi-1g

tions, which results in = 0 and A = 0. With V = U, the
multiplicative update rule for the problem (49)-(51) is (19]

(KTU + UUTK~U),, [20]
(K-U+ UUTK*U),,

[ .
jk — U]

21
Alternatively, one can construct an auxiliary function hatt 2]
upper bounding the negative terms, which leads to the fellow
ing multiplicative update rule: (22]
(K+U + UUTK_U)jk [23]
(KU +UUTK*U);;,

/ — .
jk — Uyk
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